Background There are no effective vaccines for visceral leishmaniasis (VL), a neglected parasitic disease second only to malaria in global mortality. We previously identified 14 protective candidates in a screen of 100 Leishmania antigens as DNA vaccines in mice. Here we employ whole blood assays to evaluate human cytokine responses to 11 of these antigens, in comparison to known defined and crude antigen preparations. Methods Whole blood assays were employed to measure IFN-γ, TNF-α and IL-10 responses to peptide pools of the novel antigens R71, Q51, L37, N52, L302.06, J89, M18, J41, M22, M63, M57, as well as to recombinant proteins of tryparedoxin peroxidase (TRYP), Leishmania homolog of the receptor for activated C kinase (LACK) and to crude soluble Leishmania antigen (SLA), in Indian patients with active (n = 8) or cured (n = 16) VL, and in modified Quantiferon positive (EHC+ve, n = 20) or modified Quantiferon negative (EHC?ve, n = 9) endemic healthy controls (EHC). Results Active VL, cured VL and EHC+ve groups showed elevated SLA-specific IFN-γ, but only active VL patients produced IL-10 and EHC+ve did not make TNF-α. IFN-γ to IL-10 and TNF-α to IL-10 ratios in response to TRYP and LACK antigens were higher in cured VL and EHC+ve exposed individuals compared to active VL. Five of the eleven novel candidates (R71, L37, N52, J41, and M22) elicited IFN-γ and TNF-α, but not IL-10, responses in cured VL (55–87.5% responders) and EHC+ve (40–65% responders) subjects. Conclusions Our results are consistent with an important balance between pro-inflammatory IFNγ and TNFγ cytokine responses and anti-inflammatory IL-10 in determining outcome of VL in India, as highlighted by response to both crude and defined protein antigens. Importantly, cured VL patients and endemic Quantiferon positive individuals recognise 5 novel vaccine candidate antigens, confirming our recent data for L. chagasi in Brazil, and their potential as cross-species vaccine candidates.
References
[1]
Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, et al. (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7: e35671. doi: 10.1371/journal.pone.0035671
[2]
Badaro R, Jones TC, Carvalho EM, Sampaio D, Reed SG, et al. (1986) New perspectives on a subclinical form of visceral leishmaniasis. J Infect Dis 154: 1003–1009. doi: 10.1093/infdis/154.6.1003
[3]
Badaro R, Jones TC, Lorenco R, Cerf BJ, Sampaio D, et al. (1986) A prospective study of visceral leishmaniasis in an endemic area of Brazil. J Infect Dis 154: 639–649. doi: 10.1093/infdis/154.4.639
[4]
Jeronimo SM, Oliveira RM, Mackay S, Costa RM, Sweet J, et al. (1994) An urban outbreak of visceral leishmaniasis in Natal, Brazil. Trans R Soc Trop Med Hyg 88: 386–388. doi: 10.1016/0035-9203(94)90393-X
[5]
Jeronimo SM, Teixeira MJ, Sousa A, Thielking P, Pearson RD, et al. (2000) Natural history of Leishmania (Leishmania) chagasi infection in Northeastern Brazil: long-term follow-up. Clin Infect Dis 30: 608–609. doi: 10.1086/313697
[6]
Gidwani K, Jones S, Kumar R, Boelaert M, Sundar S (2011) Interferon-gamma release assay (modified Quantiferon) as a potential marker of infection for Leishmania donovani, a proof of concept study. PLoS Negl Trop Dis 5: e1042. doi: 10.1371/journal.pntd.0001042
[7]
Ostyn B, Gidwani K, Khanal B, Picado A, Chappuis F, et al. (2011) Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: a prospective study. PLoS Negl Trop Dis 5: e1284. doi: 10.1371/journal.pntd.0001284
[8]
Bern C, Haque R, Chowdhury R, Ali M, Kurkjian KM, et al. (2007) The epidemiology of visceral leishmaniasis and asymptomatic leishmanial infection in a highly endemic Bangladeshi village. Am J Trop Med Hyg 76: 909–914.
[9]
Yazdanbakhsh M, Sacks DL (2010) Why does immunity to parasites take so long to develop? Nat Rev Immunol 10: 80–81. doi: 10.1038/nri2673
[10]
Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28: 378–384. doi: 10.1016/j.it.2007.07.004
[11]
Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, et al. (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13: 843–850. doi: 10.1038/nm1592
[12]
Stober C, Lange U, Roberts MTM, Alcami A, Blackwell JM (2005) IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol 175: 2517–2514.
[13]
Dondji B, Deak E, Goldsmith-Pestana K, Perez-Jimenez E, Esteban M, et al. (2008) Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania. Eur J Immunol 38: 706–719. doi: 10.1002/eji.200737660
[14]
Reece WH, Pinder M, Gothard PK, Milligan P, Bojang K, et al. (2004) A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat Med 10: 406–410. doi: 10.1038/nm1009
[15]
Badaro R, Lobo I, Nakatani M, Muinos A, Netto EM, et al. (2001) Successful use of a defined antigen/GM-CSF adjuvant vaccine to treat mucosal Leishmaniasis refractory to antimony: A case report. Braz J Infect Dis 5: 223–232. doi: 10.1590/S1413-86702001000400008
[16]
Khalil EA, El Hassan AM, Zijlstra EE, Mukhtar MM, Ghalib HW, et al. (2000) Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356: 1565–1569. doi: 10.1016/S0140-6736(00)03128-7
[17]
Noazin S, Khamesipour A, Moulton LH, Tanner M, Nasseri K, et al. (2009) Efficacy of killed whole-parasite vaccines in the prevention of leishmaniasis: a meta-analysis. Vaccine 27: 4747–4753. doi: 10.1016/j.vaccine.2009.05.084
[18]
Antunes CM, Mayrink W, Magalhaes PA, Costa CA, Melo MN, et al. (1986) Controlled field trials of a vaccine against New World cutaneous leishmaniasis. Int J Epidemiol 15: 572–580. doi: 10.1093/ije/15.4.572
[19]
Khalil EA, El Hassan AM, Zijlstra EE, Mukhtar MM, Ghalib HW, et al. (2000) Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356: 1565–1569. doi: 10.1016/S0140-6736(00)03128-7
[20]
Mayrink W, da Costa CA, Magalhaes PA, Melo MN, Dias M, et al. (1979) A field trial of a vaccine against American dermal leishmaniasis. Trans R Soc Trop Med Hyg 73: 385–387. doi: 10.1016/0035-9203(79)90159-7
[21]
Momeni AZ, Jalayer T, Emamjomeh M, Khamesipour A, Zicker F, et al. (1999) A randomised, double-blind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine 17: 466–472. doi: 10.1016/S0264-410X(98)00220-5
[22]
Sharifi I, FeKri AR, Aflatonian MR, Khamesipour A, Nadim A, et al. (1998) Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet 351: 1540–1543. doi: 10.1016/S0140-6736(98)09552-X
[23]
Singh OP, Gidwani K, Kumar R, Nylen S, Jones SL, et al. (2012) Reassessment of immune correlates in human visceral leishmaniasis as defined by cytokine release in whole blood. Clin Vaccine Immunol 19: 961–966. doi: 10.1128/CVI.00143-12
[24]
Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, et al. (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309: 436–442. doi: 10.1126/science.1112680
[25]
Stober CB, Lange UG, Roberts MT, Gilmartin B, Francis R, et al. (2006) From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection. Vaccine 24: 2602–2616. doi: 10.1016/j.vaccine.2005.12.012
[26]
Scott P, Pearce E, Natovitz P, Sher A (1987) Vaccination against cutaneous leishmaniasis in a murine model. II. Immunologic properties of protective and nonprotective subfractions of soluble promastigote extract. J Immunol 139: 3118–3125.
[27]
Smith PK, Krohn RI, Hermenson GT, Mallia AK, Gartner FH, et al. (1985) Measurement of protein using bicinchoninic acid. anal Bio Chem 150: 76.
[28]
Stober CB, Jeronimo SMB, Pontes NN, Miller EN, Blackwell JM (2012) Cytokine responses to novel antigens in a peri-urban population in Brazil exposed to Leishmania infantum chagasi. Am J Trop Med Hyg in press.
[29]
Barral-Netto M, Badaro R, Barral A, Almeida RP, Santos SB, et al. (1991) Tumor necrosis factor (cachectin) in human visceral leishmaniasis. J Infect Dis 163: 853–857. doi: 10.1093/infdis/163.4.853
[30]
Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, et al. (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805–817. doi: 10.1084/jem.20061141
[31]
Stober CB, Lange UG, Roberts MT, Alcami A, Blackwell JM (2007) Heterologous priming-boosting with DNA and modified vaccinia virus Ankara expressing tryparedoxin peroxidase promotes long-term memory against Leishmania major in susceptible BALB/c Mice. Infect Immun 75: 852–860. doi: 10.1128/IAI.01490-06
[32]
Rafati S, Nakhaee A, Taheri T, Taslimi Y, Darabi H, et al. (2005) Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine 23: 3716–3725. doi: 10.1016/j.vaccine.2005.02.009
[33]
Samant M, Gupta R, Kumari S, Misra P, Khare P, et al. (2009) Immunization with the DNA-encoding N-terminal domain of proteophosphoglycan of Leishmania donovani generates Th1-type immunoprotective response against experimental visceral leishmaniasis. J Immunol 183: 470–479. doi: 10.4049/jimmunol.0900265
[34]
Tewary P, Jain M, Sahani MH, Saxena S, Madhubala R (2005) A heterologous prime-boost vaccination regimen using ORFF DNA and recombinant ORFF protein confers protective immunity against experimental visceral leishmaniasis. J Infect Dis 191: 2130–2137. doi: 10.1086/430348
[35]
Duthie MS, Raman VS, Piazza FM, Reed SG (2012) The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 30: 134–141. doi: 10.1016/j.vaccine.2011.11.005
[36]
Chakravarty J, Kumar S, Trivedi S, Rai VK, Singh A, et al. (2011) A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine 29: 3531–3537. doi: 10.1016/j.vaccine.2011.02.096
[37]
Black GF, Dockrell HM, Crampin AC, Floyd S, Weir RE, et al. (2001) Patterns and implications of naturally acquired immune responses to environmental and tuberculous mycobacterial antigens in northern Malawi. J Infect Dis 184: 322–329. doi: 10.1086/322042
[38]
Black GF, Fine PEM, Warndorff DK, Floyd S, Weir RE, et al. (2001) Relationship between IFN-gamma and skin test responsiveness to Mycobacterium tuberculosis PPD in healthy, non-BCG-vaccinated young adults in Northern Malawi. Int J Tuberc Lung Dis 5: 664–672.
[39]
Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, et al. (2002) BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet 359: 1393–1401. doi: 10.1016/S0140-6736(02)08353-8
[40]
Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, Hashim FA, et al. (1993) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92: 324–329. doi: 10.1172/JCI116570
[41]
Saha S, Mondal S, Ravindran R, Bhowmick S, Modak D, et al. (2007) IL-10- and TGF-beta-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J Immunol 179: 5592–5603.
[42]
Carvalho EM, Badaro R, Reed SG, Jones TC, Johnson WD Jr (1985) Absence of gamma interferon and interleukin 2 production during active visceral leishmaniasis. J Clin Invest 76: 2066–2069. doi: 10.1172/JCI112209
[43]
Roberts MTM, Stober C, McKenzie AN, Blackwell JM (2005) IL-4 and IL-10 collude in vaccine failure for novel exacerbatory antigens in murine Leishmania major infection. Infect Immun 73: 7620–7628. doi: 10.1128/IAI.73.11.7620-7628.2005
[44]
Jayakumar A, Castilho TM, Park E, Goldsmith-Pestana K, Blackwell JM, et al. (2011) TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia). PLoS Negl Trop Dis 5: e1204. doi: 10.1371/journal.pntd.0001204
[45]
Dondji B, Perez-Jimenez E, Goldsmith-Pestana K, Esteban M, McMahon-Pratt D (2005) Prime-boost vaccination using the LACK antigen protects against murine visceral leishmaniasis. Infect Immun 73: 5286–5289. doi: 10.1128/IAI.73.8.5286-5289.2005
[46]
Greenblatt CL (1988) Cutaneous leishmaniasis: The prospects for a killed vaccine. Parasitol Today 4: 53–54. doi: 10.1016/0169-4758(88)90067-1
[47]
Gurunathan S, Sacks DL, Brown DR, Reiner SL, Charest H, et al. (1997) Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med 186: 1137–1147. doi: 10.1084/jem.186.7.1137
[48]
Gidwani K, Rai M, Chakravarty J, Boelaert M, Sundar S (2009) Evaluation of leishmanin skin test in Indian visceral leishmaniasis. Am J Trop Med Hyg 80: 566–567.