Leishmania mexicana can cause both localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, yet little is known about factors regulating disease severity in these patients. We analyzed if the disease was associated with single nucleotide polymorphisms (SNPs) in IL-1β (?511), CXCL8 (?251) and/or the inhibitor IL-1RA (+2018) in 58 Mexican mestizo patients with LCL, 6 with DCL and 123 control cases. Additionally, we analyzed the in vitro production of IL-1β by monocytes, the expression of this cytokine in sera of these patients, as well as the tissue distribution of IL-1β and the number of parasites in lesions of LCL and DCL patients. Our results show a significant difference in the distribution of IL-1β (?511 C/T) genotypes between patients and controls (heterozygous OR), with respect to the reference group CC, which was estimated with a value of 3.23, 95% CI = (1.2, 8.7) and p-value = 0.0167), indicating that IL-1β (?511 C/T) represents a variable influencing the risk to develop the disease in patients infected with Leishmania mexicana. Additionally, an increased in vitro production of IL-1β by monocytes and an increased serum expression of the cytokine correlated with the severity of the disease, since it was significantly higher in DCL patients heavily infected with Leishmania mexicana. The distribution of IL-1β in lesions also varied according to the number of parasites harbored in the tissues: in heavily infected LCL patients and in all DCL patients, the cytokine was scattered diffusely throughout the lesion. In contrast, in LCL patients with lower numbers of parasites in the lesions, IL-1β was confined to the cells. These data suggest that IL-1β possibly is a key player determining the severity of the disease in DCL patients. The analysis of polymorphisms in CXCL8 and IL-1RA showed no differences between patients with different disease severities or between patients and controls.
References
[1]
Ji J, Sun J, Soong L (2003) Impaired expression of inflammatory cytokines and chemokines at early stages of infection with Leishmania amazonensis. Infect Immun 71: 4278–4288. doi: 10.1128/IAI.71.8.4278-4288.2003
[2]
Olivo-Díaz A, Debaz H, Alaez C, Islas VJ, Pérez Pérez H, et al. (2004) Role of HLA class II alleles in susceptibility to and protection from localized cutaneous leishmaniasis. Hum Immunol 65: 255–261. doi: 10.1016/j.humimm.2003.12.008
[3]
Faria DR, Gollob KJ, Barbosa J Jr, Schriefer A, Machado PR, et al. (2005) Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect Immun 73: 7853–7859. doi: 10.1128/IAI.73.12.7853-7859.2005
[4]
Hernández-Ruíz J, Salaiza-Suazo N, Carrada G, Escoto S, Ruiz-Remigio A, et al. (2010) CD8 cells of patients with diffuse cutaneous leishmaniasis display functional exhaustion: the latter is reversed, in vitro, by TLR2 agonists. PLoS Negl Trop Dis 4(11): e871. doi: 10.1371/journal.pntd.0000871
[5]
Carrada G, Ca?eda C, Salaiza N, Delgado J, Ruiz A, et al. (2007) Monocyte cytokine and costimulatory molecule expression in patients infected with Leishmania mexicana. Parasite Immunol 29: 117–126. doi: 10.1111/j.1365-3024.2006.00924.x
[6]
Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, et al. (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science Aug 15; 321: 917–918. doi: 10.1126/science.1159194
[7]
Laskay T, van Zandbergen G, Solbach W (2008) Neutriphil granulocytes as host cells and transport vehicles for intracellular pathogens: Apoptosis as infection-promoting factor. Immunobiol 213: 183–191. doi: 10.1126/science.1159194
[8]
Lopez KS, Dinges S, Griewank K, Iwakura Y, Udey MC, et al. (2009) IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol Mar 1; 182: 3039–3046. doi: 10.4049/jimmunol.0713598
[9]
Miller LS, Pietras E M, Uricchio LH, Hirano K, Rao H, et al. (2007) Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol 179: 6993–6942. doi: 10.4049/jimmunol.0713598
[10]
Teixeira MJ, Teixeira CR, Andrade BB, Barral Netto M, Barral A (2006) Chemokines in host-parasite interactions in leishmaniasis. Trends Parasitol 22: 32–40. doi: 10.1016/j.pt.2005.11.010
[11]
Benko S, Philpott D, Girardin S (2008) The microbial and danger signals that activate Nod like receptors. Cytokine 43: 368–373. doi: 10.1016/j.cyto.2008.07.013
[12]
Pétrilli V, Dostert C, Muruve D, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Curr Op Immunol 19: 615–622. doi: 10.4049/jimmunol.0713598
[13]
Weber A, Wasillew P, Kracht M (2010) Interleukin-1β (IL-1β) processing pathway. Immunol 3: 1–2.
[14]
Garza González E, Bosques Padilla FJ, El Omar E, Hold G, Tijerina Menchaca R, et al. (2005) Role of the polymorphic IL-1B, IL-1RN and TNF-A genes in distal gastric cancer in Mexico. Int J Cancer 114: 237–241. doi: 10.1002/ijc.20718
[15]
Zabaleta J, Camargo MC, Piazuelo MB, Fontham E, Schneider BG, et al. (2006) Association of interleukin-1beta gene polymorphisms with precancerous gastric lesions in African Americans and Caucasians. Am J Gastroenterol 101: 163–171. doi: 10.1111/j.1572-0241.2006.00387.x
[16]
Duque AM, Salazar LM, Veléz MI, Martínez CA (2007) Polimorfismo de il 1-β como marcador genético en enfermedad periodontal. Revista CES Odontología 20: 51–58.
[17]
Nemetz A, Toth M, García González MA, Zagoni T, Feher J, et al. (2001) Allelic variation at the interleukin 1beta gene is associated with decreased bone mass in patients with inflammatory bowel diseases. Gut 49: 644–649. doi: 10.1136/gut.49.5.644
[18]
Erbek SS, Yurtcu E, Erbek S, Atac FB, Sahin FI, et al. (2007) Proinflammatory cytokine single nucleotide polymorphisms in nasal polyposis. Arch Otolaryngol Head Neck Surg 133: 705–709. doi: 10.1001/archotol.133.7.705
[19]
Kang JM, Kim N, Lee DH, Park JH, Lee MK, et al. (2009) The effects of genetic polymorphisms of Il-6, IL-8, and IL-10 on Helicobacter pylori-induced gastroduodenal diseases in Korea. J Clin Gastroenterol 43: 420–428. doi: 10.1097/MCG.0b013e318178d1d3
[20]
Vairaktaris E, Yapijakis C, Serefoglou Z, Derka S, Vassiliou S, et al. (2007) The inteleukin-8 (?251 A/T) polymorphism is associated with increased risk for oral squamous cell carcinoma. Eur J Surg Oncol 33: 504–507. doi: 10.1016/j.ejso.2006.11.002
[21]
Whyte M, Hubbard R, Meliconi R, Whidborne M, Eaton V, et al. (2000) Increased risk of Fibrosing Alveolitis associated with Interleukin-1 Receptor Antagonist and Tumor Necrosis Factor-α gene polymorphisms. Am J Resp Care Med 162: 755–768. doi: 10.1164/ajrccm.162.2.9909053
[22]
Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceicao Silva F, et al. (1993) Cytokine patterns in the pathogenesis of human leishmaniasis. J Clin Invest 91: 1390–1395. doi: 10.1172/JCI116341
[23]
Woolf B (1955) On estimating the relation between blood group and disease. Ann Hum Genet 19: 251–253. doi: 10.1111/j.1469-1809.1955.tb01348.x
[24]
Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53: 1253–1261. doi: 10.2307/2533494
[25]
Hidalgo MA, Silva ZI, Barrientos E, March MS, Del Bosque PL, et al. (2006) Proyecto Mapa genómico de los mexicanos: El genoma y sus implicaciones en la salud. Ciencia y Desarrollo 34–53.
[26]
Read RC, Cannings C, Naylor SC, Timms JM, Maheswaran R, et al. (2003) Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann Intern Med 38: 534–541. doi: 10.7326/0003-4819-138-7-200304010-00009
[27]
Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7: 678–689. doi: 10.1038/nri2156
[28]
Sriskandan S, Altmann DM (2008) The immunology of sepsis. J Pathol 214: 211–223. doi: 10.1002/path.2274
[29]
Kamali SE, Rasouli M, Mortazavi H, Gharesi FB (2006) Cytokine gene polymorphisms and susceptibility to cutaneous leishmaniasis in Iranian patients. Cytokine 35: 159–165. doi: 10.1016/j.cyto.2006.07.016
[30]
Matos GI, Covas CJ, Bittar R, Gomes Silva A, Marques F, et al. (2007) IFNG +874T/A polymorphism is not associated with American tegumentary leishmaniasis susceptibility but can influence Leishmania induced IFN-gamma production. BMC Infect Dis 7: 33. doi: 10.1186/1471-2334-7-33
[31]
Brajao K, Reiche EM, Kaminami MH, Pelegrinelli FM, Estevao D, et al. (2007) Analysis of the CC chemokine receptor 5 delta32 polymorphism in a Brazilian population with cutaneous leishmaniasis. J Cutan Pathol 34: 27–32. doi: 10.1111/j.1600-0560.2006.00573.x
[32]
Villase?or MI, Saliza N, Delgado J, Gutiérrez L, Pérez A, et al. (2008) Mast cells are activated by Leishmania mexicana LPG and regulate the disease outcome depending on the genetic background of the host. Parasite Immunol 30: 425–434. doi: 10.1111/j.1365-3024.2008.01042.x
[33]
Boaventura V, Santos C, Cardoso C, de Andrade J, Dos Santos W, et al. (2010) Human mucosal leishmaniasis: Neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol 40: 2830–2836. doi: 10.1002/eji.200940115
[34]
Voronov E, Dotan S, Gayvoronsky L, White RM, Cohen I, et al. (2010) IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice. Int Immunol 22: 245–257. doi: 10.1093/intimm/dxq006
[35]
Kautz K, Kostka S, Dinges S, Iwakura Y, Udey M, et al. (2010) Il-1 signalling is dispensable for protective immunity in Leishmania-resistant mice. Exp Dermat 20; 76–78. doi: 10.1111/j.1600-0625.2010.01172.x
[36]
Becker I, Salaiza N, Aguirre M, Delgado J, Carrillo-Carrasco N, et al. (2003) Leishmania lipophosphoglycan (LPG) activates NK cells through toll like receptor-2. Mol Biochem Parasitol 130: 65–74. doi: 10.1016/S0166-6851(03)00160-9
[37]
Dinarello CA (2011) A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol 41: 1203–1217. doi: 10.1002/eji.201141550
[38]
van den Veerdonk FL, Netea MG, Dinarello CA, Joosten LA (2011) Inflammasome activation and IL-1β and Il-18 processing during infection. Trends Immunol 32: 110–116. doi: 10.1016/j.it.2011.01.003
[39]
Guimar?es-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, et al. (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 106: 6728–6753. doi: 10.1073/pnas.0900226106
[40]
Meyer-Hoffert U, Wiedow O (2010) Neutrophil serine proteases: mediators of innate responses. Curr Opin Hematol 18: 19–24. doi: 10.1073/pnas.0900226106
[41]
Frodsham AJ, Hill AV (2004) Genetics of infectious diseases. Hum Mol Genet 13 Spec No 2: R187–194. doi: 10.1093/hmg/ddh225