全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cure of Hookworm Infection with a Cysteine Protease Inhibitor

DOI: 10.1371/journal.pntd.0001680

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Hookworm disease is a major global health problem and principal among a number of soil-transmitted helminthiases (STHs) for the chronic disability inflicted that impacts both personal and societal productivity. Mass drug administration most often employs single-dose therapy with just two drugs of the same chemical class to which resistance is a growing concern. New chemical entities with the appropriate single-dose efficacy are needed. Methods and Findings Using various life-cycle stages of the hookworm Ancylostoma ceylanicum in vitro and a hamster model of infection, we report the potent, dose-dependent cidal activities of the peptidyl cysteine protease inhibitors (CPIs) K11002 (4-mopholino-carbonyl-phenylalanyl-homop?henylalanyl-vinyl sulfone phenyl) and K11777 (N-methylpiperazine-phenylalanyl-homopheny?lalanyl-vinylsulfonephenyl). The latter is in late pre-clinical testing for submission as an Investigational New Drug (IND) with the US Federal Drug Administration as an anti-chagasic. In vitro, K11002 killed hookworm eggs but was without activity against first-stage larvae. The reverse was true for K11777 with a larvicidal potency equal to that of the current anti-hookworm drug, albendazole (ABZ). Both CPIs produced morbidity in ex vivo adult hookworms with the activity of K11777 again being at least the equivalent of ABZ. Combinations of either CPI with ABZ enhanced morbidity compared to single compounds. Strikingly, oral treatment of infected hamsters with 100 mg/kg K11777 b.i.d. (i.e., a total daily dose of 200 mg/kg) for one day cured infection: a single 100 mg/kg treatment removed >90% of worms. Treatment also reversed the otherwise fatal decrease in blood hemoglobin levels and body weights of hosts. Consistent with its mechanism of action, K11777 decreased by >95% the resident CP activity in parasites harvested from hamsters 8 h post-treatment with a single 100 mg/kg oral dose. Conclusion A new, oral single-dose anthelmintic that is active in an animal model of hookworm infection and that possesses a distinct mechanism of action from current anthelmintics is discovered. The data highlight both the possibility of repurposing the anti-chagasic K11777 as a treatment for hookworm infection and the opportunity to further develop CPIs as a novel anthelmintic class to target hookworms and, possibly, other helminths.

References

[1]  Stoll NR (1947) This wormy world. J Parasitol 33: 1–18.
[2]  Keiser J, Utzinger J (2010) The drugs we have and the drugs we need against major helminth infections. Adv Parasitol 73: 197–230. doi: 10.1016/S0065-308X(10)73008-6
[3]  Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, et al. (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367: 1521–1532. doi: 10.1016/S0140-6736(06)68653-4
[4]  Anten JF, Zuidema PJ (1964) Hookworm infection in Dutch servicemen returning from West New Guinea. Trop Geogr Med 64: 216–224.
[5]  Chowdhury AB, Schad GA (1972) Ancylostoma ceylanicum: a parasite of man in Calcutta and environs. Am J Trop Med Hyg 21: 300–301.
[6]  Shih PY, Hsieh MY, Huang YH, Kuo TT (2010) Multiple pruritic erythematous papules on the trunk after a trip to Thailand–quiz case. Arch Dermatol 146: 557–562. doi: 10.1001/archdermatol.2010.78-a
[7]  Stoll NR (1962) On endemic hookworm, where do we stand today? Exp Parasitol 12: 241–252. doi: 10.1016/0014-4894(62)90072-3
[8]  Sen HG (1974) Man and his hookworm parasites Bios. 45. : 68–73.
[9]  Twain M (1962) Letters from the Earth. In: deVoto B, editor. 1st ed. New York: Harper Collins.
[10]  Roche M, Layrisse M (1966) The nature and causes of “hookworm anemia”. Am J Trop Med Hyg 15: 1029–1102.
[11]  Despommier DD, Gwadz RW, Hotez PJ, Knirsch CA (2006) Parasitic Diseases. New York: Apple Trees productions LLC.
[12]  Jardim-Botelho A, Raff S, Rodrigues Rde A, Hoffman HJ, Diemert DJ, et al. (2008) Hookworm, Ascaris lumbricoides infection and polyparasitism associated with poor cognitive performance in Brazilian schoolchildren. Trop Med Int Health 13: 994–1004. doi: 10.1111/j.1365-3156.2008.02103.x
[13]  Sakti H, Nokes C, Hertanto WS, Hendratno S, Hall A, et al. (1999) Evidence for an association between hookworm infection and cognitive function in Indonesian school children. Trop Med Int Health 4: 322–334. doi: 10.1046/j.1365-3156.1999.00410.x
[14]  Brooker S, Hotez PJ, Bundy DA (2008) Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl Trop Dis 2: e291. doi: 10.1371/journal.pntd.0000291
[15]  Olsen A, Magnussen P, Ouma JH, Andreassen J, Friis H (1998) The contribution of hookworm and other parasitic infections to haemoglobin and iron status among children and adults in western Kenya. Trans R Soc Trop Med Hyg 92: 643–649. doi: 10.1016/S0035-9203(98)90795-7
[16]  Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, et al. (2010) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40: 1–13. doi: 10.1016/j.ijpara.2009.11.001
[17]  Smits HL (2009) Prospects for the control of neglected tropical diseases by mass drug administration. Expert Review of Anti-infective Therapy 7: 37–56. doi: 10.1586/14787210.7.1.37
[18]  van den Enden E (2009) Pharmacotherapy of helminth infection. Expert Opin Pharmacother 10: 435–451. doi: 10.1517/14656560902722463
[19]  Nontasut P, Singhasivanon V, Prarinyanuparp V, Chiamratana B, Sanguankiat S, et al. (1989) Effect of single-dose albendazole and single-dose mebendazole on Necator americanus. Southeast Asian J Trop Med Public Health 20: 237–242.
[20]  Horton J (2002) Albendazole: a broad spectrum anthelminthic for treatment of individuals and populations. Curr Opin Infect Dis 15: 599–608. doi: 10.1097/01.qco.000044779.05458.b0
[21]  Keiser J, Utzinger J (2008) Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA 299: 1937–1948. doi: 10.1001/jama.299.16.1937
[22]  Flohr C, Tuyen LN, Lewis S, Minh TT, Campbell J, et al. (2007) Low efficacy of mebendazole against hookworm in Vietnam: two randomized controlled trials. Am J Trop Med Hyg 76: 732–736.
[23]  Vercruysse J, Albonico M, Behnke JM, Kotze AC, Prichard RK, et al. (2011) Is anthelmintic resistance a concern for the control of human soil-transmitted helminths? International Journal for Parasitology: Drugs and Drug Resistance 1: 14–27. doi: 10.1016/j.ijpddr.2011.09.002
[24]  De Clercq D, Sacko M, Behnke J, Gilbert F, Dorny P, et al. (1997) Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. Am J Trop Med Hyg 57: 25–30. doi: 10.1016/j.ijpddr.2011.09.002
[25]  Albonico M, Bickle Q, Ramsan M, Montresor A, Savioli L, et al. (2003) Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bull World Health Organ 81: 343–352. doi: 10.1016/j.ijpddr.2011.09.002
[26]  Conder GA, Campbell WC (1995) Chemotherapy of nematode infections of veterinary importance, with special reference to drug resistance. Adv Parasitol 35: 1–84. doi: 10.1016/S0065-308X(08)60069-X
[27]  Humphries D, Mosites E, Otchere J, Twum WA, Woo L, et al. (2011) Epidemiology of hookworm infection in Kintampo North Municipality, Ghana: patterns of malaria coinfection, anemia, and albendazole treatment failure. Am J Trop Med Hyg 84: 792–800. doi: 10.4269/ajtmh.2011.11-0003
[28]  Scherrer AU, Sjoberg MK, Allangba A, Traore M, Lohourignon LK, et al. (2009) Sequential analysis of helminth egg output in human stool samples following albendazole and praziquantel administration. Acta Trop 109: 226–231. doi: 10.1016/j.actatropica.2008.11.015
[29]  Bungiro R, Cappello M (2011) Twenty-first century progress toward the global control of human hookworm infection. Curr Infect Dis Rep 13: 210–217. doi: 10.1007/s11908-011-0182-z
[30]  Xiao SH, Hui-Ming W, Tanner M, Utzinger J, Chong W (2005) Tribendimidine: a promising, safe and broad-spectrum anthelmintic agent from China. Acta Trop 94: 1–14. doi: 10.1016/j.actatropica.2005.01.013
[31]  Cappello M, Bungiro RD, Harrison LM, Bischof LJ, Griffitts JS, et al. (2006) A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc Natl Acad Sci U S A 103: 15154–15159. doi: 10.1073/pnas.0607002103
[32]  Bethony JM, Cole RN, Guo X, Kamhawi S, Lightowlers MW, et al. (2010) Vaccines to combat the neglected tropical diseases. Immunol Rev 239: 237–270. doi: 10.1111/j.1600-065X.2010.00976.x
[33]  Hotez PJ, Bethony JM, Diemert DJ, Pearson M, Loukas A (2010) Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nat Rev Microbiol 8: 814–826. doi: 10.1038/nrmicro2438
[34]  Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38: D227–233. doi: 10.1093/nar/gkp971
[35]  Ray DK, Bhopale KK (1972) Complete development of Ancylostoma ceylanicum (Looss, 1911) in golden hamsters, Mesocricetus auratus. Experientia 28: 359–361. doi: 10.1007/BF01928740
[36]  Ray DK, Bhopale KK, Shrivastava VB (1972) Migration and growth of Ancylostoma ceylanicum in golden hamsters Mesocricetus auratus. J Helminthol 46: 357–362. doi: 10.1017/S0022149X00023361
[37]  Bungiro RD Jr, Greene J, Kruglov E, Cappello M (2001) Mitigation of hookworm disease by immunization with soluble extracts of Ancylostoma ceylanicum. J Infect Dis 183: 1380–1387. doi: 10.1086/319867
[38]  Held MR, Bungiro RD, Harrison LM, Hamza I, Cappello M (2006) Dietary iron content mediates hookworm pathogenesis in vivo. Infect Immun 74: 289–295. doi: 10.1128/IAI.74.1.289-295.2006
[39]  Palmer JT, Rasnick D, Klaus JL, Br?mme D (1995) Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem 38: 3193–3196. doi: 10.1021/jm00017a002
[40]  Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 188: 725–734. doi: 10.1084/jem.188.4.725
[41]  Barr SC, Warner KL, Kornreic BG, Piscitelli J, Wolfe A, et al. (2005) A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother 49: 5160–5161. doi: 10.1128/AAC.49.12.5160-5161.2005
[42]  Caffrey CR, Scory S, Steverding D (2000) Cysteine proteinases of trypanosome parasites: novel targets for chemotherapy. Curr Drug Targets 1: 155–162. doi: 10.2174/1389450003349290
[43]  Melendez-Lopez SG, Herdman S, Hirata K, Choi MH, Choe Y, et al. (2007) Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model. Eukaryot Cell 6: 1130–1136. doi: 10.1128/EC.00094-07
[44]  Caffrey CR, Lima AP, Steverding D (2011) Cysteine peptidases of kinetoplastid parasites. Adv Exp Med Biol 712: 84–99. doi: 10.1007/978-1-4419-8414-2_6
[45]  Abdulla MH, Lim KC, Sajid M, McKerrow JH, Caffrey CR (2007) Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med 4: e14. doi: 10.1371/journal.pmed.0040014
[46]  Sajid M, Robertson SA, Brinen LS, McKerrow JH (2011) Cruzain : the path from target validation to the clinic. Adv Exp Med Biol 712: 100–115. doi: 10.1007/978-1-4419-8414-2_7
[47]  Bungiro RD Jr, Cappello M (2005) Detection of excretory/secretory coproantigens in experimental hookworm infection. Am J Trop Med Hyg 73: 915–920.
[48]  Kotze AC, Coleman GT, Mai A, McCarthy JS (2005) Field evaluation of anthelmintic drug sensitivity using in vitro egg hatch and larval motility assays with Necator americanus recovered from human clinical isolates. Int J Parasitol 35: 445–453. doi: 10.1016/j.ijpara.2004.12.007
[49]  Cho Y, Vermeire JJ, Merkel JS, Leng L, Du X, et al. (2011) Drug repositioning and pharmacophore identification in the discovery of hookworm MIF inhibitors. Chem Biol 18: 1089–1101. doi: 10.1016/j.chembiol.2011.07.011
[50]  Jacobsen W, Christians U, Benet LZ (2000) In vitro evaluation of the disposition of a novel cysteine protease inhibitor. Drug Metab Dispos 28: 1343–1351.
[51]  Barrett AJ, Kirschke H (1981) Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol 80 Pt C: 535–561.
[52]  Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102: 4639–4750. doi: 10.1021/cr010182v
[53]  Ranjit N, Jones MK, Stenzel DJ, Gasser RB, Loukas A (2006) A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy. Int J Parasitol 36: 701–710. doi: 10.1016/j.ijpara.2006.01.015
[54]  Jasmer DP, Mitreva MD, McCarter JP (2004) mRNA sequences for Haemonchus contortus intestinal cathepsin B-like cysteine proteases display an extreme in abundance and diversity compared with other adult mammalian parasitic nematodes. Mol Biochem Parasitol 137: 297–305. doi: 10.1016/j.molbiopara.2004.06.010
[55]  Jasmer DP, Roth J, Myler PJ (2001) Cathepsin B-like cysteine proteases and Caenorhabditis elegans homologues dominate gene products expressed in adult Haemonchus contortus intestine. Mol Biochem Parasitol 116: 159–169. doi: 10.1016/S0166-6851(01)00312-7
[56]  Pearson MS, Ranjit N, Loukas A (2010) Blunting the knife: development of vaccines targeting digestive proteases of blood-feeding helminth parasites. Biol Chem 391: 901–911. doi: 10.1515/BC.2010.074
[57]  Knox D (2011) Proteases in blood-feeding nematodes and their potential as vaccine candidates. Adv Exp Med Biol 712: 155–176. doi: 10.1007/978-1-4419-8414-2_10
[58]  Dowd AJ, Dalton JP, Loukas AC, Prociv P, Brindley PJ (1994) Secretion of cysteine proteinase activity by the zoonotic hookworm Ancylostoma caninum. Am J Trop Med Hyg 51: 341–347.
[59]  Harrop SA, Sawangjaroen N, Prociv P, Brindley PJ (1995) Characterization and localization of cathepsin B proteinases expressed by adult Ancylostoma caninum hookworms. Mol Biochem Parasitol 71: 163–171. doi: 10.1016/0166-6851(95)00045-3
[60]  Ranjit N, Zhan B, Stenzel DJ, Mulvenna J, Fujiwara R, et al. (2008) A family of cathepsin B cysteine proteases expressed in the gut of the human hookworm, Necator americanus. Mol Biochem Parasitol 160: 90–99. doi: 10.1016/j.molbiopara.2008.04.008
[61]  Mieszczanek J, Kofta W, Wedrychowicz H (2000) Molecular cloning of a cysteine proteinase cDNA from adult Ancylostoma ceylanicum by the method of rapid amplification of cDNA ends using polymerase chain reaction. Parasitol Res 86: 993–998. doi: 10.1007/PL00008531
[62]  Bethony JM, Loukas A, Hotez PJ, Knox DP (2006) Vaccines against blood-feeding nematodes of humans and livestock. Parasitology 133: SupplS63–79. doi: 10.1017/S0031182006001818
[63]  Xiao S, Zhan B, Xue J, Goud GN, Loukas A, et al. (2008) The evaluation of recombinant hookworm antigens as vaccines in hamsters (Mesocricetus auratus) challenged with human hookworm, Necator americanus. Exp Parasitol 118: 32–40. doi: 10.1016/j.exppara.2007.05.010
[64]  Loukas A, Bethony JM, Williamson AL, Goud GN, Mendez S, et al. (2004) Vaccination of dogs with a recombinant cysteine protease from the intestine of canine hookworms diminishes the fecundity and growth of worms. J Infect Dis 189: 1952–1961. doi: 10.1086/386346
[65]  Olliaro P, Seiler J, Kuesel A, Horton J, Clark JN, et al. (2011) Potential drug development candidates for human soil-transmitted helminthiases. PLoS Negl Trop Dis 5: e1138. doi: 10.1371/journal.pntd.0001138
[66]  Mallari JP, Shelat A, Kosinski A, Caffrey CR, Connelly M, et al. (2008) Discovery of trypanocidal thiosemicarbazone inhibitors of rhodesain and TbcatB. Bioorg Med Chem Lett 18: 2883–2885. doi: 10.1016/j.bmcl.2008.03.083
[67]  Ang KK, Ratnam J, Gut J, Legac J, Hansell E, et al. (2011) Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Negl Trop Dis 5: e1023. doi: 10.1371/journal.pntd.0001023
[68]  Coteron JM, Catterick D, Castro J, Chaparro MJ, Diaz B, et al. (2010) Falcipain inhibitors: optimization studies of the 2-pyrimidinecarbonitrile lead series. J Med Chem 53: 6129–6152. doi: 10.1021/jm100556b
[69]  Teno N, Masuya K (2010) Orally bioavailable cathepsin K inhibitors with pyrrolopyrimidine scaffold. Curr Top Med Chem 10: 752–766. doi: 10.2174/156802610791113423
[70]  Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong le T, et al. (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18: 923–928. doi: 10.1016/j.bmcl.2007.12.047
[71]  Black WC (2010) Peptidomimetic inhibitors of cathepsin K. Curr Top Med Chem 10: 745–751. doi: 10.2174/156802610791113450
[72]  Baugh M, Black D, Westwood P, Kinghorn E, McGregor K, et al. (2011) Therapeutic dosing of an orally active, selective cathepsin S inhibitor suppresses disease in models of autoimmunity. J Autoimmun 36: 201–209. doi: 10.1016/j.jaut.2011.01.003
[73]  Kometani M, Nonomura K, Tomoo T, Niwa S (2010) Hurdles in the drug discovery of cathepsin K inhibitors. Curr Top Med Chem 10: 733–744. doi: 10.2174/156802610791113478
[74]  Vercruysse J, Behnke JM, Albonico M, Ame SM, Angebault C, et al. (2011) Assessment of the anthelmintic efficacy of albendazole in school children in seven countries where soil-transmitted helminths are endemic. PLoS Negl Trop Dis 5: e948. doi: 10.1371/journal.pntd.0000948
[75]  Woods DJ, Vaillancourt VA, Wendt JA, Meeus PF (2011) Discovery and development of veterinary antiparasitic drugs: past, present and future. Future Med Chem 3: 887–896. doi: 10.4155/fmc.11.39
[76]  Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, et al. (2011) Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7: 348–350. doi: 10.1038/nchembio.559
[77]  Eastman RT, Fidock DA (2009) Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 7: 864–874. doi: 10.1038/nrmicro2239
[78]  Peters BS, Conway K (2011) Therapy for HIV: past, present, and future. Adv Dent Res 23: 23–27. doi: 10.1177/0022034511399082

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133