Background Chemotherapy for leishmaniasis, a disease caused by Leishmania parasites, is expensive and causes side effects. Furthermore, parasite resistance constitutes an increasing problem, and new drugs against this disease are needed. In this study, we examine the effect of the compound 8,10,18-trihydroxy-2,6-dolabelladiene (Dolabelladienetriol), on Leishmania growth in macrophages. The ability of this compound to modulate macrophage function is also described. Methodology/Principal Findings Leishmania-infected macrophages were treated with Dolabelladienetriol, and parasite growth was measured using an infectivity index. Nitric oxide (NO), TNF-α and TGF-β production were assayed in macrophages using specific assays. NF-kB nuclear translocation was analyzed by western blot. Dolabelladienetriol inhibited Leishmania in a dose-dependent manner; the IC50 was 44 μM. Dolabelladienetriol diminished NO, TNF-α and TGF-β production in uninfected and Leishmania-infected macrophages and reduced NF-kB nuclear translocation. Dolabelladienetriol inhibited Leishmania infection even when the parasite growth was exacerbated by either IL-10 or TGF-β. In addition, Dolabelladienetriol inhibited Leishmania growth in HIV-1-co-infected human macrophages. Conclusion Our results indicate that Dolabelladienetriol significantly inhibits Leishmania in macrophages even in the presence of factors that exacerbate parasite growth, such as IL-10, TGF-β and HIV-1 co-infection. Our results suggest that Dolabelladienetriol is a promising candidate for future studies regarding treatment of leishmaniasis, associated or not with HIV-1 infection.
References
[1]
Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in Leishmaniasis. Lancet 366: 1561–1577. doi: 10.1016/S0140-6736(05)67629-5
[2]
Singh S, Sivakumar R (2009) Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10: 307–315. doi: 10.1007/s10156-004-0348-9
[3]
Alvar J, Aparicio P, Aseffa A, Den Boer M, Ca?avate C, et al. (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21: 334–359. doi: 10.1128/CMR.00061-07
[4]
Pozio E, Morales MA (2005) The impact of HIV-protease inhibitors on opportunistic parasites. Trends Parasitol 21: 58–63. doi: 10.1016/j.pt.2004.11.003
[5]
Barreto-de-Souza V, Pacheco GJ, Silva AR, Castro-Faria-Neto HC, Bozza PT, et al. (2006) Increased Leishmania replication in HIV-1-infected macrophages is mediated by tat protein through cyclooxygenase-2 expression and prostaglandin E2 synthesis. J Infect Dis 194: 846–854. doi: 10.1086/506618
[6]
Zhao C, Papadopoulou B, Tremblay MJ (2004) Leishmania infantum enhances human immunodeficiency virus type-1 replication in primary human macrophages through a complex cytokine network. Clin Immunol 113: 81–88. doi: 10.1016/j.clim.2004.06.003
[7]
World Health Organization, Report of the Fifth Consultative Meeting on Leishmania/HIV Coinfection, Addis Ababa, Ethiopia, 20–222 March 2007.
[8]
Barral A, Pedral-Sampaio D, Grimaldi Júnior G, Momen H, Mcmahon-Pratt D, et al. (1991) Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. Am J Trop Med Hyg 44: 536–546.
[9]
Berman JD (2003) Current treatment approaches to leishmaniasis. Curr. Opin. Infect. Dis 16: 397–401. doi: 10.1097/00001432-200310000-00005
[10]
Croft SL, Barrett MP, Urbina JA (2005) Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol 21: 508–512. doi: 10.1016/j.pt.2005.08.026
[11]
Sindermann H, Engel J (2006) Development of miltefosine as an oral treatment for leishmaniasis. Trans R Soc Trop Med Hyg 100 Suppl 1: S17–S20. doi: 10.1016/j.trstmh.2006.02.010
[12]
Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8: 536–544. doi: 10.1016/S1359-6446(03)02713-2
[13]
Orhan I, Sener B, Atici T, Brun R, Perozzo R, et al. (2006) Turkish freshwater and marine macrophyte extracts show in vitro antiprotozoal activity and inhibit FabI, a key enzyme of Plasmodium falciparum fatty acid biosynthesis. Phytomedicine 13: 388–393. doi: 10.1016/j.phymed.2005.10.010
[14]
Freile-Pelegrin Y, Robledo D, Chan-Bacab MJ, Ortega-Morales BO (2008) Antileishmanial properties of tropical marine algae extracts. Fitoterapia 79: 374–377. doi: 10.1016/j.fitote.2008.02.006
[15]
Genovese G, Tedone L, Hamann MT, Morabito M (2009) The Mediterranean red alga Asparagopsis: a source of compounds against Leishmania. Mar Drugs 7: 361–366. doi: 10.3390/md7030361
[16]
Allmendinger A, Spavieri J, Kaiser M, Casey R, Hingley-Wilson S, et al. (2010) Antiprotozoal, antimycobacterial and cytotoxic potential of twenty-three British and Irish red algae. Phytother Res 24: 1099–1103. doi: 10.1002/ptr.3094
[17]
De Felício R, De Albuquerque S, Young MC, Yokoya NS, Debonsi HM (2010) Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52: 763–769. doi: 10.1016/j.jpba.2010.02.018
[18]
Dos Santos AO, Veiga-Santos P, Ueda-Nakamura T, Filho BP, Sudatti DB, et al. (2010) Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar Drugs 8: 2733–2743. doi: 10.3390/md8112733
[19]
Spavieri J, Kaiser M, Casey R, Hingley-Wilson S, Lalvani A, et al. (2010) Antiprotozoal, antimycobacterial and cytotoxic potential of some British green algae. Phytother Res 24: 1095–1098. doi: 10.1002/ptr.3072
[20]
Spavieri J, Allmendinger A, Kaiser M, Casey R, Hingley-Wilson S, et al. (2010) Antimycobacterial, antiprotozoal and cytotoxic potential of twenty-one brown algae (Phaeophyceae) from British and Irish waters. Phytother Res 24: 1724–1729. doi: 10.1002/ptr.3208
[21]
Da Silva Machado FL, Pacienza-Lima W, Rossi-Bergmann B, De Souza Gestinari LM (2011) Antileishmanial sesquiterpenes from the Brazilian red alga Laurencia dendroidea. Planta Med 77: 733–735. doi: 10.1055/s-0030-1250526
[22]
Süzge?-Sel?uk S, Meri?li AH, Güven KC, Kaiser M, Casey R, et al. (2011) Evaluation of Turkish seaweeds for antiprotozoal, antimycobacterial and cytotoxic activities. Phytother Res 25: 778–783. doi: 10.1002/ptr.3330
[23]
Barbosa JP, Pereira RC, Abrantes JL, Cirne Dos Santos CC, Rebello MA, et al. (2004) In vitro antiviral diterpenes from the Brazilian brown alga Dictyota pfaffii. Planta Med 70: 1–5. doi: 10.1055/s-2004-827235
[24]
Cirne-Santos CC, Teixeira V, Castello-Branco LR, Frugulhetti ICPP, Bou-Habib DC (2006) Inhibition of HIV-1 Replication in Human Primary Cells by a Dolabellane Diterpene Isolated from the Marine Algae Dictyota pfaffii. Planta Med 72: 295–299. doi: 10.1055/s-2005-916209
[25]
Cirne-Santos CC, Souza TM, Teixeira VL, Fontes CF, Rebello MA, et al. (2008) The dolabellane diterpene Dolabelladienetriol is a typical noncompetitive inhibitor of HIV-1 reverse transcriptase enzyme. Antiviral Res 77: 64–71. doi: 10.1016/j.antiviral.2007.08.006
[26]
Soares DC, Pereira CG, Meireles MA, Saraiva EM (2007) Leishmanicidal activity of a supercritical fluid fraction obtained from Tabernaemontana catharinensis. Parasitol Int 56: 135–139. doi: 10.1016/j.parint.2007.01.004
[27]
Green SJ, Meltzer MS, Jr Hibbs JB, Nacy CA (1990) Activated macrophages destroy intracellular Leishmania major amastigotes by an L – arginine-dependent killing mechanism. J Immunol 144: 278–283.
[28]
Field L, Dilts RV, Ravichandran R, Lenhert PG, Carnahan GE (1978) An unusually stable thionitrite from N-acetyl-D,L-penicillamine: X-ray crystal and molecular structure of 2-(acetylamino)-2-carboxy-1,1 dimethylethylthionitrite. JCS Chem Commun 6: 249–250.
[29]
Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL (1991) An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immun Meth 142: 257–265. doi: 10.1016/0022-1759(91)90114-u
[30]
Souza AS, Giudice A, Pereira JM, Guimar?es LH, De Jesus AR, et al. (2010) Resistance of Leishmania (Viannia) braziliensis to nitric oxide: correlation with antimony therapy and TNF-α production. BMC Infect Dis 10: 209–219. doi: 10.1186/1471-2334-10-209
[31]
Anderson CF, Lira R, Kamhawi S, Belkaid Y, Wynn TA, et al. (2008) IL-10 and TGF-β control the establishment of persistent and transmissible infections produced by Leishmania tropica in C57BL/6 mice. J Immunol 180: 4090–4097. doi: 10.1016/0022-1759(91)90114-u
[32]
Calegari-Silva TC, Pereira RM, De-Melo LD, Saraiva EM, Soares DC, et al. (2009) NF-kB-mediated repression of iNOS expression in Leishmania amazonensis macrophage infection. Immunol Lett 127: 19–26. doi: 10.1016/j.imlet.2009.08.009
[33]
Gray CA, De Lira SP, Silva M, Pimenta EF, Thiemann OH, et al. (2006) Sulfated meroterpenoids from the Brazilian sponge Callyspongia sp. are inhibitors of the antileishmaniasis target adenosine phosphoribosyl transferase. J Org Chem 71: 8685–8690. doi: 10.1021/jo060295k
[34]
Danelli MG, Soares DC, Abreu HS, Pe?anha LM, Saraiva EM (2009) Leishmanicidal effect of LLD-3 (1), a nor-triterpene isolated from Lophanthera lactescens. Phytochem 70: 608–614. doi: 10.1016/j.phytochem.2009.03.009
[35]
Tiuman TS, Ueda-Nakamura T, Garcia Cortez DA, Dias Filho BP, Morgado-Díaz JA, et al. (2005) Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob Agents Chemother 49: 176–182. doi: 10.1128/AAC.49.11.176-182.2005
[36]
Kappor P, Sachdeva M, Madhubala R (1999) Effect of the microtubule stabling agent taxol on Leishmanial protozoan parasites in vitro. FEMS Microbiol Lett 176: 429–435. doi: 10.1111/j.1574-6968.1999.tb13693.x
[37]
Doherty TM, Sher A, Vogel SN (1998) Paclitaxel (Taxol)-induced killing of Leishmania major in murine macrophages. Infect Immun 66: 4553–4556. doi: 10.1016/j.phytochem.2009.03.009
[38]
Sharma U, Singh S (2009) Immunobiology of leishmaniasis. Indian J Exp Biol 47: 412–423. doi: 10.1016/j.phytochem.2009.03.009
[39]
Bogdan C (2001) Nitric oxide and the immune response. Nature Immunol 2: 907–916. doi: 10.1038/ni1001-907
[40]
Blackwell JM (1999) Tumour necrosis factor alpha and mucocutaneous leishmaniasis. Parasitol Today 15: 73–75. doi: 10.1016/S0169-4758(98)01355-6
[41]
Karplus TM, Jeronimo SM, Chang H, Helms BK, Burns TL, et al. (2002) Association between the tumor necrosis factor locus and the clinical outcome of Leishmania chagasi infection. Infect Immun 70: 6919–6925. doi: 10.1128/IAI.70.12.6919-6925.2002
[42]
Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Concei??o-Silva F, et al. (1993) Cytokine patterns in the pathogenesis of human leishmaniasis. J Clin Invest 91: 1390–1395. doi: 10.1172/JCI116341
[43]
Machado PR, Lessa H, Lessa M, Guimar?es LH, Bang H, et al. (2007) Oral pentoxifylline combined with pentavalent antimony: a randomized trial for mucosal leishmaniasis. Clin Infect Dis 44: 788–793. doi: 10.1086/511643
[44]
Lessa HA, Machado P, Lima F, Cruz AA, Bacellar O, et al. (2001) Successful treatment of refractory mucosal leishmaniasis with pentoxifylline plus antimony. Am J Trop Med Hyg 65: 87–89.
[45]
Allenbach C, Launois P, Mueller C, Tacchini-Cottier F (2008) An essential role for transmembrane TNF in the resolution of the inflammatory lesion induced by Leishmania major infection. Eur J Immunol 38: 720–731. doi: 10.1002/eji.200737662
[46]
Folmer F, Jaspars M, Solano G, Cristofanon S, Henry E, et al. (2009) The inhibition of TNF-α-induced NF-kB activation by marine natural products. Biochem Pharmacol 78: 592–606. doi: 10.1016/j.bcp.2009.05.009
[47]
Folmer F, Jaspars M, Dicato M, Diederich M (2008) Marine natural products as targeted modulators of the transcription factor NF-kB. Biochem Pharmacol 75: 603–617. doi: 10.1016/j.bcp.2007.07.044
[48]
Reed SG (1999) TGF-β in infections and infectious diseases. Microbes Infect 1: 1313–1325. doi: 10.1016/S1286-4579(99)00252-X
[49]
Saha S, Mondal S, Ravindran R, Bhowmick S, Modak D, et al. (2007) IL-10 and TGF-β-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J Immunol 179: 5592–5603.
[50]
Sacks D, Anderson C (2004) Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev 201: 225–238. doi: 10.1111/j.0105-2896.2004.00185.x
[51]
Pinheiro RO, Pinto EF, Lopes JR, Guedes HL, Fentanes RF, et al. (2005) TGF-β-associated enhanced susceptibility to leishmaniasis following intramuscular vaccination of mice with Leishmania amazonensis antigens. Microbes Infect 7: 1317–1323. doi: 10.1016/j.micinf.2005.04.016