全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Whole Genome Sequencing of Field Isolates Provides Robust Characterization of Genetic Diversity in Plasmodium vivax

DOI: 10.1371/journal.pntd.0001811

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background An estimated 2.85 billion people live at risk of Plasmodium vivax transmission. In endemic countries vivax malaria causes significant morbidity and its mortality is becoming more widely appreciated, drug-resistant strains are increasing in prevalence, and an increasing number of reports indicate that P. vivax is capable of breaking through the Duffy-negative barrier long considered to confer resistance to blood stage infection. Absence of robust in vitro propagation limits our understanding of fundamental aspects of the parasite's biology, including the determinants of its dormant hypnozoite phase, its virulence and drug susceptibility, and the molecular mechanisms underlying red blood cell invasion. Methodology/Principal Findings Here, we report results from whole genome sequencing of five P. vivax isolates obtained from Malagasy and Cambodian patients, and of the monkey-adapted Belem strain. We obtained an average 70–400 X coverage of each genome, resulting in more than 93% of the Sal I reference sequence covered by 20 reads or more. Our study identifies more than 80,000 SNPs distributed throughout the genome which will allow designing association studies and population surveys. Analysis of the genome-wide genetic diversity in P. vivax also reveals considerable allele sharing among isolates from different continents. This observation could be consistent with a high level of gene flow among parasite strains distributed throughout the world. Conclusions Our study shows that it is feasible to perform whole genome sequencing of P. vivax field isolates and rigorously characterize the genetic diversity of this parasite. The catalogue of polymorphisms generated here will enable large-scale genotyping studies and contribute to a better understanding of P. vivax traits such as drug resistance or erythrocyte invasion, partially circumventing the lack of laboratory culture that has hampered vivax research for years.

References

[1]  Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, et al. (2010) The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: e774. doi: 10.1371/journal.pntd.0000774
[2]  Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, et al. (2007) Vivax malaria: neglected and not benign. Am J Trop Med Hyg 77: 79–87.
[3]  Mendis K, Sina BJ, Marchesini P, Carter R (2001) The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64: 97–106.
[4]  Carlton JM, Sina BJ, Adams JH (2011) Why is Plasmodium vivax a neglected tropical disease? PLoS Negl Trop Dis 5: e1160. doi: 10.1371/journal.pntd.0001160
[5]  Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, et al. (2008) Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455: 757–763. doi: 10.1038/nature07327
[6]  Collins WE, Contacos PG, Krotoski WA, Howard WA (1972) Transmission of four Central American strains of Plasmodium vivax from monkey to man. J Parasitol 58: 332–335. doi: 10.2307/3278097
[7]  Dharia NV, Bright AT, Westenberger SJ, Barnes SW, Batalov S, et al. (2010) Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes. Proc Natl Acad Sci U S A 107: 20045–20050. doi: 10.1073/pnas.1003776107
[8]  Carter R, Mendis KN (2002) Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 15: 564–594. doi: 10.1128/CMR.15.4.564-594.2002
[9]  Cornejo OE, Escalante AA (2006) The origin and age of Plasmodium vivax. Trends Parasitol 22: 558–563. doi: 10.1016/j.pt.2006.09.007
[10]  Orjuela-Sanchez P, Karunaweera ND, da Silva-Nunes M, da Silva NS, Scopel KK, et al. (2010) Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies. BMC Genet 11: 65. doi: 10.1186/1471-2156-11-65
[11]  Menard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, et al. (2010) Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci U S A 107: 5967–5971. doi: 10.1073/pnas.0912496107
[12]  del Portillo HA, Gysin J, Mattei DM, Khouri E, Udagama PV, et al. (1988) Plasmodium vivax: cloning and expression of a major blood-stage surface antigen. Exp Parasitol 67: 346–353. doi: 10.1016/0014-4894(88)90081-1
[13]  McNamara DT, Kasehagen LJ, Grimberg BT, Cole-Tobian J, Collins WE, et al. (2006) Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay. Am J Trop Med Hyg 74: 413–421.
[14]  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921. doi: 10.1038/35057062
[15]  Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324
[16]  Li H (2011) Improving SNP discovery by base alignment quality. Bioinformatics 27: 1157–1158. doi: 10.1093/bioinformatics/btr076
[17]  Sriprawat K, Kaewpongsri S, Suwanarusk R, Leimanis ML, Lek-Uthai U, et al. (2009) Effective and cheap removal of leukocytes and platelets from Plasmodium vivax infected blood. Malar J 8: 115. doi: 10.1186/1475-2875-8-115
[18]  Homewood CA, Neame KD (1976) A comparison of methods used for the removal of white cells from malaria-infected blood. Ann Trop Med Parasitol 70: 249–251. doi: 10.1007/bf00120178
[19]  Feng X, Carlton JM, Joy DA, Mu J, Furuya T, et al. (2003) Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc Natl Acad Sci U S A 100: 8502–8507. doi: 10.1073/pnas.1232502100
[20]  Nkhoma SC, Nair S, Cheeseman IH, Rohr-Allegrini C, Singlam S, et al. (2012) Close kinship within multiple-genotype malaria parasite infections. Proc Biol Sci 279: 2589–2598. doi: 10.1098/rspb.2012.0113
[21]  Jongwutiwes S, Putaporntip C, Iwasaki T, Ferreira MU, Kanbara H, et al. (2005) Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. Mol Biol Evol 22: 1733–1739. doi: 10.1093/molbev/msi168
[22]  Cole-Tobian J, King CL (2003) Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol 127: 121–132. doi: 10.1016/S0166-6851(02)00327-4
[23]  Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155: 2011–2014.
[24]  Mu J, Joy DA, Duan J, Huang Y, Carlton J, et al. (2005) Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol Biol Evol 22: 1686–1693. doi: 10.1093/molbev/msi160
[25]  Gunawardena S, Karunaweera ND, Ferreira MU, Phone-Kyaw M, Pollack RJ, et al. (2010) Geographic structure of Plasmodium vivax: microsatellite analysis of parasite populations from Sri Lanka, Myanmar, and Ethiopia. Am J Trop Med Hyg 82: 235–242. doi: 10.4269/ajtmh.2010.09-0588
[26]  Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, et al. (2007) Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol 37: 1013–1022. doi: 10.1016/j.ijpara.2007.02.010
[27]  Baird JK (2004) Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother 48: 4075–4083. doi: 10.1128/AAC.48.11.4075-4083.2004
[28]  Rieckmann KH, Davis DR, Hutton DC (1989) Plasmodium vivax resistance to chloroquine? Lancet 2: 1183–1184. doi: 10.1016/S0140-6736(89)91792-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133