Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), causative agents of Human African Trypanosomiasis (sleeping sickness) in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs), components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA) protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR). HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb), a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1) and not found in related taxa, which are either human serum susceptible (Tbb) or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2). We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR function.
References
[1]
Mehlitz D, Zillmann U, Scott CM, Godfrey DG (1982) Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part III. Characterization of Trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmed Parasitol 33: 113–118. doi: 10.1111/j.1468-1293.2011.00914.x
[2]
Agbo EC, Majiwa PA, Claassen EJ, Roos MH (2001) Measure of molecular diversity within the Trypanosoma brucei subspecies Trypanosoma brucei brucei and Trypanosoma brucei gambiense as revealed by genotypic characterization. Exp Parasitol 99: 123–131. doi: 10.1006/expr.2001.4666
[3]
Gibson W (2007) Resolution of the species problem in African trypanosomes. Int J Parasitol 37: 829–838. doi: 10.1016/j.ijpara.2007.03.002
[4]
Hajduk SL, Moore DR, Vasudevacharya J, Siqueira H, Torri AF, et al. (1989) Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J Biol Chem 264: 5210–5217.
[5]
Pays E, Vanhollebeke B (2009) Human innate immunity against African trypanosomes. Curr Opin Immunol 21: 493–498. doi: 10.1016/j.coi.2009.05.024
[6]
Vanhollebeke B, Pays E (2010) The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill. Mol Microbiol 76: 806–814. doi: 10.1111/j.1365-2958.2010.07156.x
[7]
Wheeler RJ (2010) The trypanolytic factor-mechanism, impacts and applications. Trends Parasitol 26: 457–464. doi: 10.1016/j.pt.2010.05.005
[8]
Xong HV, Vanhamme L, Chamekh M, Chimfwembe CE, Van Den Abbeele J, et al. (1998) A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95: 839–846. doi: 10.1016/S0092-8674(00)81706-7
[9]
Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, Nolan DP, Lins L, et al. (2003) Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422: 83–87. doi: 10.1038/nature01461
[10]
Capewell P, Veitch NJ, Turner CM, Raper J, Berriman M, et al. (2011) Differences between Trypanosoma brucei gambiense groups 1 and 2 in their resistance to killing by trypanolytic factor 1. PLoS Negl Trop Dis 5: e1287. doi: 10.1371/journal.pntd.0001287
[11]
Kieft R, Capewell P, Turner CM, Veitch NJ, MacLeod A, et al. (2010) Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc Natl Acad Sci U S A 107: 16137–16141. doi: 10.1073/pnas.1007074107
[12]
Koffi M, De Meeus T, Bucheton B, Solano P, Camara M, et al. (2009) Population genetics of Trypanosoma brucei gambiense, the agent of sleeping sickness in Western Africa. Proc Natl Acad Sci U S A 106: 209–214. doi: 10.1073/pnas.0811080106
[13]
Simo G, Njiokou F, Tume C, Lueong S, De Meeus T, et al. (2010) Population genetic structure of Central African Trypanosoma brucei gambiense isolates using microsatellite DNA markers. Infect Genet Evol 10: 68–76. doi: 10.1016/j.meegid.2009.09.019
[14]
Gibson WC, de C. Marshall TF, Godfrey DG (1980) Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Adv Parasitol 18: 175–246. doi: 10.1016/s0065-308x(08)60400-5
[15]
Tait A, Barry JD, Wink R, Sanderson A, Crowe JS (1985) Enzyme variation in T. brucei ssp. II. Evidence for T. b. rhodesiense being a set of variants of T. b. brucei. Parasitology 90(Pt 1): 89–100. doi: 10.1017/S0031182000049040
[16]
MacLeod A, Welburn S, Maudlin I, Turner CM, Tait A (2001) Evidence for multiple origins of human infectivity in Trypanosoma brucei revealed by minisatellite variant repeat mapping. J Mol Evol 52: 290–301. doi: 10.1016/s0065-308x(08)60400-5
[17]
Balmer O, Beadell JS, Gibson W, Caccone A (2011) Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl Trop Dis 5: e961. doi: 10.1371/journal.pntd.0000961
[18]
Maddison DR, Maddison WP (2006) MacClade4: Analysis of phylogeny and character evolution. 4.08 ed. Sunderland, MA: Sinauer Associates.
[19]
Flot JF (2011) seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 10: 162–166. doi: 10.1111/j.1755-0998.2009.02732.x
[20]
Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68: 978–989. doi: 10.1086/319501
[21]
Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x
[22]
Vanhollebeke B, De Muylder G, Nielsen MJ, Pays A, Tebabi P, et al. (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320: 677–681. doi: 10.1126/science.1156296
[23]
Higgins M, Tkachenko O, Brown S, Reed J, Carrington M (In Review) Structure of the trypanosome haptoglobin haemoglobin receptor and its implications for receptor function and innate immunity. Nat Struct Mol Biol. doi: 10.1073/pnas.1214943110