Background Scabies is highly prevalent in socially disadvantaged communities such as indigenous populations and in developing countries. Generalized itching causes discomfort to the patient; however, serious complications can occur as a result of secondary bacterial pyoderma, commonly caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus. In the tropics, skin damage due to scabies mite infestations has been postulated to be an important link in the pathogenesis of disease associated with acute rheumatic fever and heart disease, poststreptococcal glomerulonephritis and systemic sepsis. Treatment of scabies decreases the prevalence of infections by bacteria. This study aims to identify the molecular mechanisms underlying the link between scabies and GAS infections. Methodology/Principal Findings GAS bacteria were pre-incubated with blood containing active complement, phagocytes and antibodies against the bacteria, and subsequently tested for viability by plate counts. Initial experiments were done with serum from an individual previously exposed to GAS with naturally acquired anti-GAS antibodies. The protocol was optimized for large-scale testing of low-opsonic whole blood from non-exposed human donors by supplementing with a standard dose of heat inactivated human sera previously exposed to GAS. This allowed an extension of the dataset to two additional donors and four proteins tested at a range of concentrations. Shown first is the effect of scabies mite complement inhibitors on human complement using ELISA-based complement activation assays. Six purified recombinant mite proteins tested at a concentration of 50 μg/ml blocked all three complement activation pathways. Further we demonstrate in human whole blood assays that each of four scabies mite complement inhibitors tested increased GAS survival rates by 2–15 fold. Conclusions/Significance We propose that local complement inhibition plays an important role in the development of pyoderma in scabies infested skin. This molecular link between scabies and bacterial infections may provide new avenues to develop alternative treatment options against this neglected disease.
References
[1]
Carapetis JR, Walker AM, Hibble M, Sriprakash KS, Currie BJ (1999) Clinical and epidemiological features of group A streptococcal bacteraemia in a region with hyperendemic superficial streptococcal infection. Epidemiol Infect 122: 59–65. doi: 10.1017/S0950268898001952
[2]
Vos T, Barker B, Begg S, Stanley L, Lopez AD (2009) Burden of disease and injury in Aboriginal and Torres Strait Islander Peoples: the Indigenous health gap. International Journal of Epidemiology 38: 470–477. doi: 10.1093/ije/dyn240
[3]
Andrews RM, Kearns T, Connors C, Parker C, Carville K, et al. (2009) A Regional Initiative to Reduce Skin Infections amongst Aboriginal Children Living in Remote Communities of the Northern Territory, Australia. PLoS Negl Trop Dis 3: e554. doi: 10.1371/journal.pntd.0000554
[4]
Andrews RM, McCarthy J, Carapetis JR, Currie BJ (2009) Skin disorders, including pyoderma, scabies, and tinea infections. Pediatr Clin North Am 56: 1421–1440. doi: 10.1016/j.pcl.2009.09.002
[5]
WHO (2005) The current evidence for the burden of group A streptococcal diseases. Geneva: World Health Organization.
[6]
Carapetis JR, Steer AC, Mulholland EK, Weber M (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685–694. doi: 10.1016/S1473-3099(05)70267-X
[7]
Parnaby MG, Carapetis JR (2010) Rheumatic fever in indigenous Australian children. J Paediatr Child Health 46: 527–533. doi: 10.1111/j.1440-1754.2010.01841.x
[8]
Clucas DB, Carville KS, Connors C, Currie BJ, Carapetis JR, et al. (2008) Disease burden and health-care clinic attendances for young children in remote aboriginal communities of northern Australia. Bull World Health Organ 86: 275–281. doi: 10.2471/BLT.07.043034
[9]
Carapetis JR, Connors C, Yarmirr D, Krause V, Currie BJ (1997) Success of a scabies control program in an Australian aboriginal community. Pediatr Infect Dis J 16: 494–499. doi: 10.1097/00006454-199705000-00008
[10]
Lawrence G, Leafasia J, Sheridan J, Hills S, Wate J, et al. (2005) Control of scabies, skin sores and haematuria in children in the Solomon Islands: another role for ivermectin. Bulletin of the World Health Organization 83: 34–42. doi: /S0042-96862005000100012
[11]
Bos JD, Pasch MC, Asghar SS (2001) Defensins and complement systems from the perspective of skin immunity and autoimmunity. Clin Dermatol 19: 563–572. doi: 10.1016/S0738-081X(00)00174-7
Holt DC, Fischer K, Allen GE, Wilson D, Wilson P, et al. (2003) Mechanisms for a novel immune evasion strategy in the scabies mite sarcoptes scabiei: a multigene family of inactivated serine proteases. J Invest Dermatol 121: 1419–1424. doi: 10.1046/j.1523-1747.2003.12621.x
[14]
Fischer K, Langendorf CG, Irving JA, Reynolds S, Willis C, et al. (2009) Structural mechanisms of inactivation in scabies mite serine protease paralogues. J Mol Biol 390: 635–645. doi: 10.1016/j.jmb.2009.04.082
[15]
Bergstrom FC, Reynolds S, Johnstone M, Pike RN, Buckle AM, et al. (2009) Scabies mite inactivated serine protease paralogs inhibit the human complement system. J Immunol 182: 7809–7817. doi: 10.4049/jimmunol.0804205
[16]
Mika A, Reynolds S, Mohlin FC, Willis C, M SP, et al. (2012) Novel Scabies mite serpins inhibit all three pathways of the human complement system. PLoS ONE. In Press. doi: 10.1371/journal.pone.0040489
[17]
Fischer K, Holt DC, Harumal P, Currie BJ, Walton SF, et al. (2003) Generation and characterization of cDNA clones from Sarcoptes scabiei var. hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. American Journal of Tropical Medicine and Hygiene 68: 61–64.
[18]
Fischer K, Holt DC, Wilson P, Davis J, Hewitt V, et al. (2003) Normalization of a cDNA library cloned in lambda ZAP by a long PCR and cDNA reassociation procedure. BioTechniques 34: 250–252, 254.
[19]
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1016/0003-2697(76)90527-3
[20]
Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, et al. (2002) Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100: 1869–1877.
[21]
Lancefield RC (1957) Differentiation of group A streptococci with a common R antigen into three serological types, with special reference to the bactericidal test. J Exp Med 106: 525–544. doi: 10.1084/jem.106.4.525
[22]
Seelen MA, Roos A, Wieslander J, Mollnes TE, Sjoholm AG, et al. (2005) Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA. J Immunol Methods 296: 187–198. doi: 10.1016/j.jim.2004.11.016
[23]
Bexborn F, Engberg AE, Sandholm K, Mollnes TE, Hong J, et al. (2009) Hirudin versus heparin for use in whole blood in vitro biocompatibility models. J Biomed Mater Res A 89: 951–959. doi: 10.1002/jbm.a.32034
[24]
Willis C, Fischer K, Walton SF, Currie BJ, Kemp DJ (2006) Scabies mite inactivated serine protease paralogues are present both internally in the mite gut and externally in feces. Am J Trop Med Hyg 75: 683–687.
[25]
Mika A, Goh P, Holt DC, Kemp DJ, Fischer K (2011) Scabies mite peritrophins are potential targets of human host innate immunity. PLoS Negl Trop Dis 5: e1331. doi: 10.1371/journal.pntd.0001331
[26]
Shelley WB, Shelley ED, Burmeister V (1988) Staphylococcus aureus colonization of burrows in erythrodermic Norwegian scabies. A case study of iatrogenic contagion. J Am Acad Dermatol 19: 673–678. doi: 10.1016/S0190-9622(88)70221-2
[27]
Yuste J, Ali S, Sriskandan S, Hyams C, Botto M, et al. (2006) Roles of the alternative complement pathway and C1q during innate immunity to Streptococcus pyogenes. J Immunol 176: 6112–6120.
[28]
Rooijakkers SH, van Strijp JA (2007) Bacterial complement evasion. Mol Immunol 44: 23–32. doi: 10.1016/j.molimm.2006.06.011
[29]
Mounsey K, Ho MF, Kelly A, Willis C, Pasay C, et al. (2010) A tractable experimental model for study of human and animal scabies. PLoS Negl Trop Dis 4: e756. doi: 10.1371/journal.pntd.0000756