Leishmania parasites, the causative agent of leishmaniasis, are transmitted through the bite of an infected sand fly. Leishmania parasites present two basic forms known as promastigote and amastigote which, respectively, parasitizes the vector and the mammalian hosts. Infection of the vertebrate host is dependent on the development, in the vector, of metacyclic promastigotes, however, little is known about the factors that trigger metacyclogenesis in Leishmania parasites. It has been generally stated that “stressful conditions” will lead to development of metacyclic forms, and with the exception of a few studies no detailed analysis of the molecular nature of the stress factor has been performed. Here we show that presence/absence of nucleosides, especially adenosine, controls metacyclogenesis both in vitro and in vivo. We found that addition of an adenosine-receptor antagonist to in vitro cultures of Leishmania amazonensis significantly increases metacyclogenesis, an effect that can be reversed by the presence of specific purine nucleosides or nucleobases. Furthermore, our results show that proliferation and metacyclogenesis are independently regulated and that addition of adenosine to culture medium is sufficient to recover proliferative characteristics for purified metacyclic promastigotes. More importantly, we show that metacyclogenesis was inhibited in sand flies infected with Leishmania infantum chagasi that were fed a mixture of sucrose and adenosine. Our results fill a gap in the life cycle of Leishmania parasites by demonstrating how metacyclogenesis, a key point in the propagation of the parasite to the mammalian host, can be controlled by the presence of specific purines.
References
[1]
Sacks DL, Perkins PV (1984) Identification of an infective stage of Leishmania promastigotes. Science 223: 1417–1419. doi: 10.1126/science.6701528
[2]
Kamhawi S (2006) Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol 22: 439–445. doi: 10.1016/j.pt.2006.06.012
[3]
Bates PA, Tetley L (1993) Leishmania mexicana : induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Exp Parasitol 76: 412–423. doi: 10.1006/expr.1993.1050
[4]
Bates PA (2008) Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 11: 340–344. doi: 10.1016/j.mib.2008.06.003
[5]
Hammond DJ, Gutteridge WE (1984) Purine and pyrimidine metabolism in the Trypanosomatidae. Mol Biochem Parasitol 13: 243–261. doi: 10.1016/0166-6851(84)90117-8
[6]
Williams M, Francis J, Ghai G, Braunwalder A, Psychoyos S, et al. (1987) Biochemical characterization of the triazoloquinazoline, CGS 15943, a novel, non-xanthine adenosine antagonist. J Pharmacol Exp Ther 241: 415–420.
[7]
Souza MC, de Assis EA, Gomes RS, Marques da Silva EA, Melo MN, et al. (2010) The influence of ecto-nucleotidases on Leishmania amazonensis infection and immune response in C57B/6 mice. Acta Trop 115: 262–269. doi: 10.1016/j.actatropica.2010.04.007
[8]
Wanderley JL, Pinto dSLH, Deolindo P, Soong L, Borges VM, et al. (2009) Cooperation between apoptotic and viable metacyclics enhances the pathogenesis of Leishmaniasis. PLoS ONE 4: e5733. doi: 10.1371/journal.pone.0005733
[9]
Modi GB, Tesh RB (1983) A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol 20: 568–569.
[10]
Spath GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99: 97–103. doi: 10.1006/expr.2001.4656
[11]
Marques-da-Silva EA, de Oliveira JC, Figueiredo AB, de Souza Lima JD, Carneiro CM, et al. (2008) Extracellular nucleotide metabolism in Leishmania: influence of adenosine in the establishment of infection. Microbes Infect 10: 850–857. doi: 10.1016/j.micinf.2008.04.016
[12]
Sacks DL, Melby PC (2001) Animal models for the analysis of immune responses to leishmaniasis. Curr Protoc Immunol 19: 19.12.11–19.12.20.
[13]
Uliana SR, Goyal N, Freymuller E, Smith DF (1999) Leishmania: overexpression and comparative structural analysis of the stage-regulated meta 1 gene. Exp Parasitol 92: 183–191. doi: 10.1006/expr.1999.4410
[14]
Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, et al. (1992) Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science 256: 1812–1815. doi: 10.1126/science.1615326
[15]
Titus RG, Marchand M, Boon T, Louis JA (1985) A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol 7: 545–555. doi: 10.1111/j.1365-3024.1985.tb00098.x
[16]
Seyfang A, Kavanaugh MP, Landfear SM (1997) Aspartate 19 and glutamate 121 are critical for transport function of the myo-inositol/H+ symporter from Leishmania donovani. J Biol Chem 272: 24210–24215. doi: 10.1074/jbc.272.39.24210
[17]
Vasudevan G, Carter NS, Drew ME, Beverley SM, Sanchez MA, et al. (1998) Cloning of Leishmania nucleoside transporter genes by rescue of a transport-deficient mutant. Proc Natl Acad Sci U S A 95: 9873–9878. doi: 10.1073/pnas.95.17.9873
[18]
Killick-Kendrick R (1990) The life-cycle of Leishmania in the sandfly with special reference to the form infective to the vertebrate host. Ann Parasitol Hum Comp 65 Suppl 1: 37–42.
[19]
Muskus CE, Marin VM (2002) [Metacyclogenesis: a basic process in the biology of Leishmania ]. Biomedica 22: 167–177.
[20]
Cunningham ML, Titus RG, Turco SJ, Beverley SM (2001) Regulation of differentiation to the infective stage of the protozoan parasite Leishmania major by tetrahydrobiopterin. Science 292: 285–287. doi: 10.1126/science.1057740
[21]
Silva R, Sacks DL (1987) Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immun 55: 2802–2806.
Lincoln LM, Ozaki M, Donelson JE, Beetham JK (2004) Genetic complementation of Leishmania deficient in PSA (GP46) restores their resistance to lysis by complement. Mol Biochem Parasitol 137: 185–189. doi: 10.1016/j.molbiopara.2004.05.004
[24]
Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 132: 1–16. doi: 10.1016/S0166-6851(03)00211-1
[25]
Spath GF, Garraway LA, Turco SJ, Beverley SM (2003) The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proc Natl Acad Sci U S A 100: 9536–9541. doi: 10.1073/pnas.1530604100
[26]
Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, et al. (2002) Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Mol Biochem Parasitol 121: 213–224. doi: 10.1016/S0166-6851(02)00033-6
[27]
McConville MJ, Turco SJ, Ferguson MA, Sacks DL (1992) Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J 11: 3593–3600.
[28]
Wilson R, Bates MD, Dostalova A, Jecna L, Dillon RJ, et al. (2010) Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay. PLoS Negl Trop Dis 4: e816. doi: 10.1371/journal.pntd.0000816
[29]
Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124: 495–507. doi: 10.1017/S0031182002001439
[30]
Cuvillier A, Miranda JC, Ambit A, Barral A, Merlin G (2003) Abortive infection of Lutzomyia longipalpis insect vectors by aflagellated LdARL-3A-Q70L overexpressing Leishmania amazonensis parasites. Cell Microbiol 5: 717–728. doi: 10.1046/j.1462-5822.2003.00316.x
[31]
Pinto-da-Silva LH, Fampa P, Soares DC, Oliveira SM, Souto-Padron T, et al. (2005) The 3A1-La monoclonal antibody reveals key features of Leishmania (L) amazonensis metacyclic promastigotes and inhibits procyclics attachment to the sand fly midgut. Int J Parasitol 35: 757–764. doi: 10.1016/j.ijpara.2005.03.004
[32]
Landfear SM (2001) Molecular genetics of nucleoside transporters in Leishmania and African trypanosomes. Biochem Pharmacol 62: 149–155. doi: 10.1016/S0006-2952(01)00663-3
[33]
Ortiz D, Valdes R, Sanchez MA, Hayenga J, Elya C, et al. (2010) Purine restriction induces pronounced translational upregulation of the NT1 adenosine/pyrimidine nucleoside transporter in Leishmania major. Mol Microbiol 78: 108–118. doi: 10.1111/j.1365-2958.2010.07328.x
[34]
Marr JJ, Berens RL, Nelson DJ (1978) Purine metabolism in Leishmania donovani and Leishmania braziliensis. Biochim Biophys Acta 544: 360–371. doi: 10.1016/0304-4165(78)90104-6
[35]
Carter NS, Yates P, Arendt CS, Boitz JM, Ullman B (2008) Purine and pyrimidine metabolism in Leishmania. Adv Exp Med Biol 625: 141–154. doi: 10.1007/978-0-387-77570-8_12
[36]
Stein A, Vaseduvan G, Carter NS, Ullman B, Landfear SM, et al. (2003) Equilibrative nucleoside transporter family members from Leishmania donovani are electrogenic proton symporters. J Biol Chem 278: 35127–35134. doi: 10.1074/jbc.M306188200
[37]
Aronow B, Allen K, Patrick J, Ullman B (1985) Altered nucleoside transporters in mammalian cells selected for resistance to the physiological effects of inhibitors of nucleoside transport. J Biol Chem 260: 6226–6233.
[38]
Nolan LL, Kidder GW (1980) Inhibition of growth and purine-metabolizing enzymes of trypanosomid flagellates by N6-methyladenine. Antimicrob Agents Chemother 17: 567–571. doi: 10.1128/AAC.17.4.567
[39]
Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60: 207–221. doi: 10.1146/annurev.arplant.043008.092045
[40]
Dinant S, Bonnemain JL, Girousse C, Kehr J (2010) Phloem sap intricacy and interplay with aphid feeding. C R Biol 333: 504–515. doi: 10.1016/j.crvi.2010.03.008
[41]
Carter NS, Yates PA, Gessford SK, Galagan SR, Landfear SM, et al. (2010) Adaptive responses to purine starvation in Leishmania donovani. Mol Microbiol 78: 92–107. doi: 10.1111/j.1365-2958.2010.07327.x
[42]
Landfear SM (2011) Nutrient transport and pathogenesis in selected parasitic protozoa. Eukaryot Cell 10: 483–493. doi: 10.1128/EC.00287-10
[43]
Zakai HA, Chance ML, Bates PA (1998) In vitro stimulation of metacyclogenesis in Leishmania braziliensis, L. donovani, L. major and L. mexicana. Parasitology 116 (Pt 4) 305–309. doi: 10.1017/S0031182097002382