全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Direct Interaction between EgFABP1, a Fatty Acid Binding Protein from Echinococcus granulosus, and Phospholipid Membranes

DOI: 10.1371/journal.pntd.0001893

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Growth and maintenance of hydatid cysts produced by Echinococcus granulosus have a high requirement for host lipids for biosynthetic processes, membrane building and possibly cellular and developmental signalling. This requires a high degree of lipid trafficking facilitated by lipid transporter proteins. Members of the fatty acid binding protein (FABP) family have been identified in Echinococcus granulosus, one of which, EgFABP1 is expressed at the tegumental level in the protoscoleces, but it has also been described in both hydatid cyst fluid and secretions of protoscoleces. In spite of a considerable amount of structural and biophysical information on the FABPs in general, their specific functions remain mysterious. Methodology/Principal Findings We have investigated the way in which EgFABP1 may interact with membranes using a variety of fluorescence-based techniques and artificial small unilamellar vesicles. We first found that bacterial recombinant EgFABP1 is loaded with fatty acids from the synthesising bacteria, and that fatty acid binding increases its resistance to proteinases, possibly due to subtle conformational changes induced on EgFABP1. By manipulating the composition of lipid vesicles and the ionic environment, we found that EgFABP1 interacts with membranes in a direct contact, collisional, manner to exchange ligand, involving both ionic and hydrophobic interactions. Moreover, we observed that the protein can compete with cytochrome c for association with the surface of small unilamellar vesicles (SUVs). Conclusions/Significance This work constitutes a first approach to the understanding of protein-membrane interactions of EgFABP1. The results suggest that this protein may be actively involved in the exchange and transport of fatty acids between different membranes and cellular compartments within the parasite.

References

[1]  Eckert J, Conraths FJ, Tackmam K (2000) Echinococcosis: an emerging or re-emerging zoonosis? Int J Parasitol 30: 1283–94. doi: 10.1016/S0020-7519(00)00130-2
[2]  Sadjjadi SM (2006) Present situation of echinococcosis in the Middle East and Arabic North Africa. Parasitol Int 55 (Suppl.) S197–S202. doi: 10.1016/j.parint.2005.11.030
[3]  Ahmadi NA, Meshkehkar M (2011) An abattoir-based study on the prevalence and economic losses due to cystic echinococcosis in slaughtered herbivores in Ahwaz, south-western Iran. J Helminthol 85 (1) 33–9. doi: 10.1017/S0022149X10000234
[4]  Thompson RCA (1995) Biology and systematics of Echinococcus. In: Thompson RCA, Lymbery AJ, editors. Echinococcus and Hydatid Disease. Wallingford: CAB International.
[5]  Plenefisch J, Xiao H, Mei B, Geng J, Komuniecki PR, et al. (2000) Secretion of a novel class of iFABPs in nematodes: coordinate use of the Ascaris/Caenorhabditis model systems. Mol Biochem Parasitol 105 (2) 223–36. doi: 10.1016/S0166-6851(99)00179-6
[6]  Mei B, Kennedy MW, Beauchamp J, Komuniecki PR, Komuniecki R (1997) Secretion of a novel, developmentally regulated fatty acid-binding protein into the perivitelline fluid of the parasitic nematode, Ascaris suum. J Biol Chem 272 (15) 9933–41. doi: 10.1074/jbc.272.15.9933
[7]  Haunerland NH, Spener F (2004) Fatty-acid binding proteins: insights from genetic manipulations. Prog Lip Res 43: 328–49. doi: 10.1016/j.plipres.2004.05.001
[8]  Storch J, Córsico B (2008) The emerging functions and mechanisms of the mammalian fatty acid-binding proteins. Ann Rev Nutrition 28: 73–95. doi: 10.1146/annurev.nutr.27.061406.093710
[9]  Majumdar A, Petrescu AD, Xiong Y, Noy N (2011) Nuclear translocation of cellular retinoic acid-binding protein II is regulated by retinoic acid-controlled SUMOylation. J Biol Chem 286 (49) 42749–57. doi: 10.1074/jbc.M111.293464
[10]  Storch J, Thumser AE (2010) Tissue-specific Functions in the Fatty Acid-binding Protein Family. J Biol Chem 285 (43) 32679–83. doi: 10.1074/jbc.R110.135210
[11]  Hsu KT, Storch J (1996) Fatty Acid Transfer from Liver and Intestinal Fatty Acid-binding Proteins to Membranes Occurs by Different Mechanisms. J Biol Chem 271: 13317–23. doi: 10.1074/jbc.271.23.13317
[12]  McDermott L, Kennedy MW, McManus DP, Bradley JE, Cooper A, et al. (2002) How Helminth lipid-binding proteins offload their ligands to membranes: differential mechanisms of fatty acid transfer by the ABA-1 polyprotein allergen and Ov-FAR-1 proteins of nematodes and Sj-FABPc of Schistosomes. Biochemistry 41: 6706–13. doi: 10.1021/bi0159635
[13]  McManus DP, Bryant C (1986) Biochemistry and physiology of Echinococcus. In: Thompson RCA editor. The Biology of Echinococcus and Hydatid Disease, London: George Allen and Unwin, p. 127–128.
[14]  Tielens AGM, Hellemond IJ (2006) Unusual Aspects of Metabolism in Flatworm Parasites. In: Maule AG, Marks NJ, eds. Parasitic Flatworms Molecular Biology, Biochemistry, Immunology and Physiology. Oxfordshire, UK: CAB International.
[15]  Aziz A, Zhang W, Li J, Loukas A, McManus DP, et al. (2011) Proteomic characterisation of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. J Proteomics 74 (9) 1560–72. doi: 10.1016/j.jprot.2011.02.021
[16]  Virginio VG, Monteiro KM, Drumond F, de Carvalho MO, Vargas DM, et al. (2012) Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Mol Biochem Parasitol 183 (1) 15–22. doi: 10.1016/j.molbiopara.2012.01.001
[17]  Estuningsih SE, Smooker PM, Wiedosari E, Widjajanti S, Vaiano S, et al. (1997) Evaluation of antigens of Fasciola gigantica as vaccines against tropical fasciolosis in cattle. Int J Parasitol 27: 1419–28. doi: 10.1016/S0020-7519(97)00096-9
[18]  Ramajo V, Oleaga A, Casanueva P, Hillyer GV, Muro A (2001) Vaccination of sheep against Fasciola hepatica with homologous fatty acid binding proteins. Vet Parasitol 97 (1) 35–46. doi: 10.1016/S0304-4017(01)00388-0
[19]  Chabalgoity JA, Harrison JA, Esteves A, Demarco de Hormaeche R, Khan CM, et al. (1997) Expression and immunogenicity of an Echinococcus granulosus fatty acid-binding protein in live attenuated Salmonella vaccine strains. Infect Immun 65: 2402–12.
[20]  Wei F, Liu Q, Zhai Y, Fu Z, Liu W, et al. (2009) IL-18 enhances protective effect in mice immunized with a Schistosoma japonicum FABP DNA vaccine. Acta Trop 3: 284–8. doi: 10.1016/j.actatropica.2009.03.010
[21]  Velkov T, Horne J, Laguerre A, Jones E, Scanlon MJ, et al. (2007) Examination of the role of intestinal fatty acid-binding protein in drug absorption using a parallel artificial membrane permeability assay. Chem Biol 14 (4) 453–65. doi: 10.1016/j.chembiol.2007.03.009
[22]  Chuang S, Velkov T, Horne J, Porter CJ, Scanlon MJ (2008) Characterization of the drug binding specificity of rat liver fatty acid binding protein. J Med Chem 51 (13) 3755–64. doi: 10.1021/jm701192w
[23]  Velkov T (2009) Thermodynamics of lipophilic drug binding to intestinal fatty acid binding protein and permeation across membranes. Mol Pharm 6 (2) 557–70. doi: 10.1021/mp800227w
[24]  Esteves A, Dallagiovanna B, Ehrlich R (1993) A developmentally regulated gene of Echinococcus granulosus codes for a 15.5 kilodalton polypeptide related to fatty acid binding proteins. Mol Biochem Parasitol 58: 215–22. doi: 10.1016/0166-6851(93)90043-W
[25]  Esteves A, Ehrlich R (2006) Invertebrate fatty acid binding proteins. Comp Biochem Physiol 142: 262–74. doi: 10.1016/j.cbpc.2005.11.006
[26]  Alvite G, Di Pietro SM, Santomé JA, Ehrlich R, Esteves A (2001) Binding properties of Echinococcus granulosus fatty acid binding protein. Biochim Biophys Acta 1533: 293–302. doi: 10.1016/S1388-1981(01)00164-0
[27]  Jakobsson E, Alvite G, Bergfors T, Esteves A, Kleywegt GJ (2003) The crystal structure of Echinococcus granulosus fatty-acid-binding protein 1. Biochim Biophys Acta 1649: 40–50. doi: 10.1016/S1570-9639(03)00151-1
[28]  Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37 (8) 911–7. doi: 10.1139/o59-099
[29]  Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5: 600–8.
[30]  Maté SM, Brenner RR, Ves-Losada A (2004) Phosphatidyl choline fatty acid remodeling in the hepatic cell nuclei. Prostaglandins Leukot Essent Fatty Acids 70 (1) 49–57. doi: 10.1016/j.plefa.2003.08.023
[31]  Arighi CN, Rossi JP, Delfino JM (2003) Temperature-induced conformational switch in intestinal fatty acid binding protein (IFABP) revealing an alternative mode for ligand binding. Biochem 42 (24) 7539–51. doi: 10.1021/bi020680d
[32]  Sch?gger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166 (2) 368–79. doi: 10.1016/0003-2697(87)90587-2
[33]  Córsico B, Liou HL, Storch J (2004) The alpha-helical domain of liver fatty acid binding protein is responsible for the diffusion-mediated transfer of fatty acids to phospholipid membranes. Biochem 43: 3600–07. doi: 10.1021/bi0357356
[34]  McDermott L, Moore J, Brass A, Price NC, Kelly SM, et al. (2001) Mutagenic and chemical modification of the ABA-1 allergen of the nematode Ascaris: consequences for structure and lipid binding properties. Biochem 40 (33) 9918–26. doi: 10.1021/bi0026876
[35]  Kleinfeld AM, Storch J (1993) Transfer of long-chain fluorescent fatty acids between small and large unilamellar vesicles. Biochemistry 32 (8) 2053–61. doi: 10.1021/bi00059a024
[36]  Massey JB, Bick DH, Pownall HJ (1997) Spontaneous transfer of monoacyl amphiphiles between lipid and protein surfaces. Biophys J 72 (4) 1732–43. doi: 10.1016/S0006-3495(97)78819-2
[37]  De Gerónimo E, Hagan RM, Wilton DC, Córsico B (2010) Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes. Biochim Biophys Acta 1801 (9) 1082–9. doi: 10.1016/j.bbalip.2010.05.008
[38]  Córsico B, Cistola DP, Frieden C, Storch J (1998) The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proc Natl Acad Sci 95: 12174–78. doi: 10.1073/pnas.95.21.12174
[39]  Mustonen P, Virtanen JA, Somerharju PJ, Kinnunen PK (1987) Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochem 26 (11) 2991–7. doi: 10.1021/bi00385a006
[40]  Lowe JB, Sacchettini JC, Laposata M, McQuillan JJ, Gordon JI (1987) Expression of rat intestinal fatty acid-binding protein in Escherichia coli. Purification and comparison of ligand binding characteristics with that of Escherichia coli-derived rat liver fatty acid-binding protein. J Biol Chem 262 (12) 5931–7.
[41]  Rabinowitch HD, Sklan D, Chace DH, Stevens RD, Fridovich I (1993) Escherichia coli produces linoleic acid during late stationary phase. J Bacteriol 175 (17) 5324–8.
[42]  Jamison RS, Newcomer ME, Ong DE (1994) Cellular retinoid-binding proteins: limited proteolysis reveals a conformational change upon ligand binding. Biochem 33 (10) 2873–9. doi: 10.1021/bi00176a017
[43]  Storch J, Bass NM, Kleinfeld AM (1989) Studies of the fatty acid-binding site of rat liver fatty acid-binding protein using fluorescent fatty acids. J Biol Chem 264 (15) 8708–13.
[44]  Falomir-Lockhart L, Laborde L, Kahn C, Storch J, Córsico B (2006) Protein-Membrane Interaction and Fatty Acid Transfer from Intestinal Fatty Acid Binding Protein: Support for a multi step process. J Biol Chem 281: 14232–40. doi: 10.1074/jbc.M601682200
[45]  Franchini GR, Storch J, Córsico B (2008) The integrity of the α-helical domain of intestinal fatty acid binding protein is essential for the collision-mediated transfer of fatty acids to phospholipid membranes. Biochim Biophys Acta 1781: 192–9. doi: 10.1016/j.bbalip.2008.01.005
[46]  Chemale G, Ferreira HB, Barrett J, Brophy PM, Zaha A (2005) Echinococcus granulosus antigen B hydrophobic ligand binding properties. Biochim Biophys Acta 1747 (2) 189–94. doi: 10.1016/j.bbapap.2004.11.004
[47]  Córsico B, Franchini GR, Hsu KT, Storch J (2005) Electrostatic and hydrophobic interactions contribute to the collisional mechanism of fatty acid transfer from intestinal fatty acid binding protein to phospholipid membranes. J Lipid Res 46: 1765–72. doi: 10.1194/jlr.M500140-JLR200
[48]  Ryt?maa M, Kinnunen PK (1994) Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J Biol Chem 269 (3) 1770–4.
[49]  Faucon JF, Dufourcq J, Lussan C, Bernon R (1976) Lipid-protein interactions in membrane models. Fluorescence polarization study of cytochrome b5-phospholipids complexes. Biochim Biophys Acta 436 (2) 283–94. doi: 10.1016/0005-2736(76)90193-0
[50]  Kennedy MW, Beauchamp J (2000) Sticky-finger interaction sites on cytosolic lipid-binding proteins? Cell Mol Life Sci 57 (10) 1379–87. doi: 10.1007/PL00000623
[51]  Obal G, Ramos AL, Silva V, Lima A, Batthyany C, et al. (2012) Characterisation of the Native Lipid Moiety of Echinococcus granulosus Antigen B. PLoS Negl Trop Dis 6 (5) e1642. doi: 10.1371/journal.pntd.0001642
[52]  Falomir-Lockhart LJ, Franchini GR, Guerbi MX, Storch J, Córsico B (2011) Interaction of enterocyte FABPs with phospholipid membranes: clues for specific physiological roles. Biochim Biophys Acta 1811 (7–8) 452–9. doi: 10.1016/j.bbalip.2011.04.005
[53]  Gillilan RE, Ayers SD, Noy N (2007) Structural basis for activation of fatty acid-binding protein 4. J Mol Biol 372 (5) 1246–60. doi: 10.1016/j.jmb.2007.07.040
[54]  Storch J, McDermott L (2009) Structural and functional analysis of fatty acid-binding proteins. J Lipid Res Suppl: S 126–31. doi: 10.1194/jlr.r800084-jlr200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133