全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetics of Host Response to Leishmania tropica in Mice – Different Control of Skin Pathology, Chemokine Reaction, and Invasion into Spleen and Liver

DOI: 10.1371/journal.pntd.0001667

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. Methods We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. Principal Findings Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. Conclusion Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.

References

[1]  Rittig MG, Bogdan C (2000) Leishmania-host-cell interaction: complexities and alternative views. Parasitol Today 16: 292–297. doi: 10.1016/S0169-4758(00)01692-6
[2]  Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13: 151–177. doi: 10.1146/annurev.iy.13.040195.001055
[3]  McMahon-Pratt D, Alexander J (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 201: 206–224. doi: 10.1111/j.0105-2896.2004.00190.x
[4]  Farrell JP (2002) Leishmania. Boston, Dordrecht, London: Kluwer Academic Publishers. 193 p.
[5]  Kobets T, Grekov I, Lipoldová M (2012) Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem 19: 1443–1474. doi: 10.2174/092986712799828300
[6]  Herwaldt BL (1999) Leishmaniasis. Lancet 354: 1191–1199. doi: 10.1016/S0140-6736(98)10178-2
[7]  Lipoldová M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7: 294–305. doi: 10.1038/nrg1832
[8]  Jacobson RL (2003) Leishmania tropica (Kinetoplastida: Trypanosomatidae) - a perplexing parasite. Folia Parasit 50: 241–250. doi: 10.1093/hmg/11.20.2363
[9]  Svobodova M, Votypka J, Peckova J, Dvorak V, Nasereddin A, et al. (2006) Distinct transmission cycles of Leishmania tropica in 2 adjacent foci, Northern Israel. Emerg Infect Dis 12: 1860–1868. doi: 10.3201/eid1212.060497
[10]  Magill AJ, Gr?gl M, Gasser RA Jr, Sun W, Oster CN (1993) Visceral infection caused by Leishmania tropica in veterans of Operation Desert Storm. N Engl J Med 328: 1383–1387. doi: 10.1056/NEJM199305133281904
[11]  Sacks DL, Kenney RT, Kreutzer RD, Jaffe CL, Gupta AK, et al. (1995) Indian kala-azar caused by Leishmania tropica. Lancet 345: 959–961. doi: 10.1016/S0140-6736(95)90703-3
[12]  Alborzi A, Pouladfar GR, Fakhar M, Motazedian MH, Hatam GR, et al. (2008) Isolation of Leishmania tropica from a patient with visceral leishmaniasis and disseminated cutaneous leishmaniasis, southern Iran. Am J Trop Med Hyg 79: 435–437.
[13]  Lira R, Méndez S, Carrera L, Jaffe C, Neva F, et al. (1998) Leishmania tropica: the identification and purification of metacyclic promastigotes and use in establishing mouse and hamster models of cutaneous and visceral disease. Exp Parasitol 89: 331–342. doi: 10.1006/expr.1998.4283
[14]  Girginkarde?ler N, Balcio?lu IC, Yereli K, ?zbilgin A, ?zbel Y, et al. (2001) Cutaneous leishmaniasis infection in BALB/c mice using a Leishmania tropica strain isolated from Turkey. J Parasitol 87: 1177–1178. doi: 10.1645/0022-3395(2001)087[1177:CLIIBC]2.0.CO;2
[15]  Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2: 845–858. doi: 10.1038/nri933
[16]  Anderson CF, Lira R, Kamhawi S, Belkaid Y, Wynn TA, et al. (2008) IL-10 and TGF-beta control the establishment of persistent and transmissible infections produced by Leishmania tropica in C57BL/6 mice. J Immunol 180: 4090–4097.
[17]  Demant P, Hart AAM (1986) Recombinant congenic strains – a new tool for analysing genetic traits determined by more than one gene. Immunogenetics 24: 416–422. doi: 10.1007/BF00377961
[18]  Demant P, Lipoldová M, Svobodová M (1996) Resistance to Leishmania major in mice. Science 274: 1392–1393. doi: 10.1126/science.274.5291.1392
[19]  Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, et al. (2000) Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun 1: 200–206. doi: 10.1038/sj.gene.6363660
[20]  Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AAM, et al. (2003) Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun 71: 2041–2046. doi: 10.1128/IAI.71.4.2041-2046.2003
[21]  Havelková H, Badalová J, Svobodová M, Vojtí?ková J, Kurey I, et al. (2006) Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun 7: 220–233. doi: 10.1038/sj.gene.6364290
[22]  Kurey I, Kobets T, Havelková H, Slapni?ková M, Quan L, et al. (2009) Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics 61: 619–633. doi: 10.1007/s00251-009-0392-9
[23]  Stassen AP, Groot PC, Eppig JT, Demant P (1996) Genetic composition of the recombinant congenic strains. Mamm Genome 7: 55–58. doi: 10.1007/s003359900013
[24]  Grekov I, Svobodová M, Nohynková E, Lipoldová M (2011) Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods 87: 273–277. doi: 10.1016/j.mimet.2011.08.012
[25]  Rogers ME, Ilg T, Nikolaev AV, Ferguson MAJ, Bates PA (2004) Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 430: 463–467. doi: 10.1038/nature02675
[26]  Titus RG, Marchand M, Boon T, Louis JA (1985) A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol 7: 545–555. doi: 10.1111/j.1365-3024.1985.tb00098.x
[27]  Kobets T, Badalová J, Grekov I, Havelková H, Svobodová M, et al. (2010) Leishmania parasite detection and quantification using PCR-ELISA. Nat Protoc 5: 1074–1080. doi: 10.1038/nprot.2010.68
[28]  Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, et al. (2002) Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics 54: 174–183. doi: 10.1007/s00251-002-0439-7
[29]  Howard JG, Hale C, Chan-Liew WL (1980) Immunological regulation of experimental cutaneous leishmaniasis. 1. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunol 2: 303–314. doi: 10.1111/j.1365-3024.1980.tb00061.x
[30]  Longley R, Smith C, Fortin A, Berghout J, McMorran B, et al. (2011) Host resistance to malaria: using mouse models to explore the host response. Mamm Genome 22: 32–42. doi: 10.1007/s00335-010-9302-6
[31]  Lipoldová M, Kosa?ová M, Zajícová A, Holáň V, Hart AA, et al. (1995) Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics 41: 301–311. doi: 10.1007/BF00172155
[32]  Holáň V, Lipoldová M, Demant P (1996) Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production of and response to IL-2. Immunogenetics 44: 27–35. doi: 10.1007/BF02602654
[33]  Havelková H, Badalová J, Demant P, Lipoldová M (2000) A new type of genetic regulation of allogeneic response. A novel locus on mouse chromosome 4, Alan2 controls MLC reactivity to three different alloantigens: C57BL/10, BALB/c and CBA. Genes Immun 1: 483–487. doi: 10.1038/sj.gene.6363711
[34]  Lipoldová M, Havelková H, Badalová J, Demant P (2005) Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function and lung tumor susceptibility. Int J Cancer 114: 394–399. doi: 10.1002/ijc.20731
[35]  Havelková H, Holáň V, Kárník I, Lipoldová M (2006) Mouse model for analysis of non-MHC genes that influence allogeneic response: recombinant congenic strains of OcB/Dem series that carry identical H2 locus. Cent Eur J Biol 1: 16–28.
[36]  ?íma M, Havelková H, Quan L, Svobodová M, Jaro?íková T, et al. (2011) Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis 5: e1173. doi: 10.1371/journal.pntd.0001173
[37]  Shockley KR, Churchill GA (2006) Gene expression analysis of mouse chromosome substitution strains. Mamm Genome 17: 598–614. doi: 10.1007/s00335-005-0176-y
[38]  Min-Oo G, Fortin A, Tam MF, Nantel A, Stevenson MM, et al. (2003) Pyruvate kinase deficiency in mice protects against malaria. Nat Genet 35: 357–362. doi: 10.1038/ng1260
[39]  Alexander J (1988) Sex differences and cross-immunity in DBA/2 mice infected with L. mexicana and L. major. Parasitology 96(Pt 2): 297–302. doi: 10.1017/S0031182000058303
[40]  Mock BA, Nacy CA (1988) Hormonal modulation of sex differences in resistance to Leishmania major systemic infections. Infect Immun 56: 3316–3319.
[41]  Giannini MS (1986) Sex-influenced response in the pathogenesis of cutaneous leishmaniasis in mice. Parasite Immunol 8: 31–37. doi: 10.1111/j.1365-3024.1986.tb00831.x
[42]  Alexander J, Irving K, Snider H, Satoskar A (2010) Sex hormones of host responses against parasites. In: Klein SL, Roberts CW, editors. Sex hormons and immunity to infection. pp. 147–186. Springer Heildelberg, Dordrecht, London, New York, 2010.
[43]  Sakthianandeswaren A, Curtis JM, Elso C, Kumar B, Baldwin TM, et al. (2010) Fine mapping of Leishmania major susceptibility locus lmr2 and evidence of a role for Fli1 in disease and wound healing. Infect Immun 78: 2734–2744. doi: 10.1128/IAI.00126-10
[44]  Lee AH, Hong JH, Seo YS (2000) Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors. Biochem J 350 Pt 1: 131–138. doi: 10.1042/0264-6021:3500131
[45]  Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25: 787–820. doi: 10.1146/annurev.immunol.24.021605.090529
[46]  Teixeira JM, Teixeira CR, Andrade BB, Barral-Netto M, Barral A (2006) Chemokines in host-parasite interactions in leishmaniasis. Trends Parasitol 22: 32–40. doi: 10.1016/j.pt.2005.11.010
[47]  Oghumu S, Lezama-Davila CM, Isaac-Marquez AP, Satoskar AR (2010) Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol 126: 389–396. doi: 10.1016/j.exppara.2010.02.010
[48]  Battacharyya S, Ghosh S, Dasgupta B, Mazumder D, Roy S, et al. (2002) Chemokine-induced leishmanicidal activity in murine macrophages via generation of nitric oxide. J Infect Dis 185: 1704–1708. doi: 10.1086/340820
[49]  Brandonisio O, Panaro MA, Fumarola L, Sisto M, Leogrande D, et al. (2002) Macrophage chemotactic protein-1 and macrophage inflammatory protein-1α induce nitric oxide release and enchance parasite killing in Leishmania infantum-infected macrophages. Clin Exp Med 2: 125–129. doi: 10.1007/s102380200017
[50]  Da Costa Santiago H, Ferreira Oliveira C, Santiago L, Oliveira Ferraz F, de Glória de Souza D, et al. (2004) Involvement of chemokine RANTES (CCL5) in resistance to experimental infection with Leishmania major. Infect Immun 72: 4918–4923. doi: 10.1128/IAI.72.8.4918-4923.2004
[51]  Ritter U, Moll H, Laskay T, Brocker E, Velazco O, et al. (1996) Differential expression of chemokines in patients with localized and diffuse cutaneous American leishmaniasis. J Infect Dis 173: 699–709. doi: 10.1093/infdis/173.3.699
[52]  Johnson J, Suzuki Y, Mack D, Mui E, Estes R, et al. (2002) Genetic analysis of influences on survival following Toxoplasma gondii infection. Int J Parasitol 32: 179–185. doi: 10.1016/S0020-7519(01)00321-6
[53]  Masocha W, Amin DN, Kristensson K, Rottenberg ME (2008) Differential invasion of Trypanosoma brucei brucei and lymphocytes into the brain of C57BL/6 and 129Sv/Ev mice. Scand J Immunol 68: 484–491. doi: 10.1111/j.1365-3083.2008.02170.x
[54]  Rathkolb B, Noyes HA, Brass A, Dark P, Fuchs H, et al. (2009) Clinical chemistry of congenic mice with quantitative trait loci for predicted responses to Trypanosoma congolense infection. Infect Immun 77: 3948–3957. doi: 10.1128/IAI.00658-09
[55]  Helegbe GK, Yanagi T, Senba M, Huy NT, Shuaibu MN, et al. (2011) Histopathological studies in two strains of semi-immune mice infected with Plasmodium berghei ANKA after chronic exposure. Parasitol Res 108: 807–814. doi: 10.1007/s00436-010-2121-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133