全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Isothermal Microcalorimetry, a New Tool to Monitor Drug Action against Trypanosoma brucei and Plasmodium falciparum

DOI: 10.1371/journal.pntd.0001668

Full-Text   Cite this paper   Add to My Lib

Abstract:

Isothermal microcalorimetry is an established tool to measure heat flow of physical, chemical or biological processes. The metabolism of viable cells produces heat, and if sufficient cells are present, their heat production can be assessed by this method. In this study, we investigated the heat flow of two medically important protozoans, Trypanosoma brucei rhodesiense and Plasmodium falciparum. Heat flow signals obtained for these pathogens allowed us to monitor parasite growth on a real-time basis as the signals correlated with the number of viable cells. To showcase the potential of microcalorimetry for measuring drug action on pathogenic organisms, we tested the method with three antitrypanosomal drugs, melarsoprol, suramin and pentamidine and three antiplasmodial drugs, chloroquine, artemether and dihydroartemisinin, each at two concentrations on the respective parasite. With the real time measurement, inhibition was observed immediately by a reduced heat flow compared to that in untreated control samples. The onset of drug action, the degree of inhibition and the time to death of the parasite culture could conveniently be monitored over several days. Microcalorimetry is a valuable element to be added to the toolbox for drug discovery for protozoal diseases such as human African trypanosomiasis and malaria. The method could probably be adapted to other protozoan parasites, especially those growing extracellularly.

References

[1]  Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis. Lancet 375: 148–159. doi: 10.1016/S0140-6736(09)60829-1
[2]  World Health Organization (2011) African trypanosomiasis (sleeping sickness). Fact sheet N°259. Available: http://www.who.int/mediacentre/factsheet?s/fs259/en/#. Accessed 2012 Jan 3.
[3]  World Health Organization (2011) Malaria. Fact sheet N°94. Available: http://www.who.int/mediacentre/factsheet?s/fs094/en/index.html. Accessed 2011 Nov 27.
[4]  R?z B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R (1997) The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 68: 139–147. doi: 10.1016/S0001-706X(97)00079-X
[5]  Desjardins RE, Canfield CJ, Haynes JD, Chulay JD (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16: 710–718. doi: 10.1128/AAC.16.6.710
[6]  Braissant O, Wirz D, G?pfert B, Daniels AU (2010) Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 303: 1–8. doi: 10.1111/j.1574-6968.2009.01819.x
[7]  von Ah U, Wirz D, Daniels A (2009) Isothermal micro calorimetry - a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus RID B-8154-2008. BMC Microbiol 9: doi:10.1186/1471-2180-9-106.
[8]  Bermudez J, B?ckman P, Sch?n A (1992) Microcalorimetric evaluation of the effects of methotrexate and 6-thioguanine on sensitive T-lymphoma cells and on a methotrexate-resistant subline. Cell Biophys 20: 111–123. doi: 10.1186/1471-2180-9-106
[9]  Manneck T, Braissant O, Haggenmüller Y, Keiser J (2011) Isothermal microcalorimetry to study drugs against Schistosoma mansoni. J Clin Microbiol 49: 1217–1225. doi: 10.1128/JCM.02382-10
[10]  Kemp RB, Guan YH (1999) Chapter 11 Microcalorimetric studies of animal tissues and their isolated cells. pp. 557–656. From Macromolecules to Man. Elsevier Science B.V., Vol. Volume 4.
[11]  James AM (1987) Thermal and energetic studies of cellular biological systems. Bristol, UK: Wright. 4 p.
[12]  Trampuz A, Steinhuber A, Wittwer M, Leib SL (2007) Rapid diagnosis of experimental meningitis by bacterial heat production in cerebrospinal fluid. BMC Infect Dis 7: 116. doi: 10.1186/1471-2334-7-116
[13]  Baltz T, Baltz D, Giroud C, Crockett J (1985) Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 4: 1273–1277. doi: 10.1016/s1573-4374(99)80014-4
[14]  Bakunov SA, Bakunova SM, Wenzler T, Ghebru M, Werbovetz KA, et al. (2010) Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J Med Chem 53: 254–272. doi: 10.1021/jm901178d
[15]  Snyder C, Chollet J, Santo-Tomas J, Scheurer C, Wittlin S (2007) In vitro and in vivo interaction of synthetic peroxide RBx11160 (OZ277) with piperaquine in Plasmodium models. Exp Parasitol 115: 296–300. doi: 10.1016/j.exppara.2006.09.016
[16]  Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193: 673–675. doi: 10.1126/science.781840
[17]  Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FCK, et al. (2004) Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430: 900–904. doi: 10.1038/nature02779
[18]  Ljungholm K, Norén B, Wads? I (1979) Microcalorimetric Observations of Microbial Activity in Normal and Acidified Soils. Oikos 33: 24–30. doi: 10.2307/3544507
[19]  Lamprecht I (2003) Calorimetry and thermodynamics of living systems. Thermochim Acta 405: 1–13. doi: 10.1016/s0040-6031(03)00123-0
[20]  Maerki S, Brun R, Charman SA, Dorn A, Matile H, et al. (2006) In vitro assessment of the pharmacodynamic properties and the partitioning of OZ277/RBx-11160 in cultures of Plasmodium falciparum. J Antimicrob Chemother 58: 52–58. doi: 10.1093/jac/dkl209

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133