Novel drugs to treat human African trypanosomiasis (HAT) are still urgently needed despite the recent addition of nifurtimox-eflornithine combination therapy (NECT) to WHO Model Lists of Essential Medicines against second stage HAT, where parasites have invaded the central nervous system (CNS). The pharmacology of a potential orally available lead compound, N-methoxy-6-{5-[4-(N-methoxyamidino) phenyl]-furan-2-yl}-nicotinamidine (DB844), was evaluated in a vervet monkey model of second stage HAT, following promising results in mice. DB844 was administered orally to vervet monkeys, beginning 28 days post infection (DPI) with Trypanosoma brucei rhodesiense KETRI 2537. DB844 was absorbed and converted to the active metabolite 6-[5-(4-phenylamidinophenyl)-furanyl-2-y?l]-nicotinamide(DB820), exhibiting plasma Cmax values of 430 and 190 nM for DB844 and DB820, respectively, after the 14th dose at 6 mg/kg qd. A 100-fold reduction in blood trypanosome counts was observed within 24 h of the third dose and, at the end of treatment evaluation performed four days post the last drug dose, trypanosomes were not detected in the blood or cerebrospinal fluid of any monkey. However, some animals relapsed during the 300 days of post treatment monitoring, resulting in a cure rate of 3/8 (37.5%) and 3/7 (42.9%) for the 5 mg/kg×10 days and the 6 mg/kg×14 days dose regimens respectively. These DB844 efficacy data were an improvement compared with pentamidine and pafuramidine both of which were previously shown to be non-curative in this model of CNS stage HAT. These data show that synthesis of novel diamidines with improved activity against CNS-stage HAT was possible.
References
[1]
Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, et al. (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118: 1301–1310. doi: 10.1172/JCI33945
[2]
Ford LB (2007) Civil conflict and sleeping sickness in Africa in general and Uganda in particular. Confl Hlth 1: doi:10.1186/1752-1505-1-6.
[3]
Brun R, Blum J, Chappuis F, Burri C (2009) Human African trypanosomiasis. Lancet. DO1:10, 1016/S0140-6736(09)60829-1. doi: 10.1186/1752-1505-1-6
[4]
World Health Organisation (2010) African Trypanosomiasis (sleeping sickness). http://www.who.int/mediacentre/factsheet?s/fs259/en/.
[5]
Simarro PP, Jannin J, Cattand P (2008) Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med 5: e55. doi: 10.1371/journal.pmed.0050055
[6]
Simarro PP, Diarra A, Postigo JAR, Franco JR, Jannin JG (2011) The Human African Trypanosomiasis Control and Surveillance Programme of the World Health Organization 2000–2009: The Way Forward. PLoS NTDs 5: e1007. DOI:10.1371/journal.pntd.0001007.
[7]
Aksoy S (2011) Sleeping Sickness Elimination in Sight: Time to celebrate and reflect, but not relax. PLoS Negl Trop Dis 5: e1008. doi:10.1371/journal.pntd.0001008.
[8]
Priotto G, Kasparian S, Mutombo W (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374: 56–64. doi: 10.1016/S0140-6736(09)61117-X
[9]
Paine MF, Wang MZ, Generaux CN, Boykin DW, Wilson WD, et al. (2010) Diamidines for human African trypanosomiasis. Curr Opin Invest. Drugs 11: 876–883.
[10]
Thuita JK, Karanja SM, Wenzler T, Mdachi RE, Ngotho JM, et al. (2008a) Efficacy of the diamidine DB75 and its prodrug DB289, against murine models of human African trypanosomiasis. Acta Trop Oct 108: 6–10. Epub 2008 Aug 5:
[11]
Wenzler T, Boykin DW, Ismail MA, Hall JE, Tidwell RR, et al. (2009) New treatment option for second-stage African sleeping sickness: In vitro and in vivo efficacy of aza analogs of DB289. Antimicrob Agents and Chemother 53: 4185–4192. doi: 10.1128/AAC.00225-09
[12]
Mdachi RE, Thuita JK, Kagira JM, Ngotho JM, Murilla , et al. (2008) Efficacy of a novel diamidine compound 2, 5-bis (4-amidinophenyl)-furan-bis-O-methlylami?doxime(Pafuramidine, DB289) against T. b rhodesiense infection in vervet monkeys after oral administration. Antimicrob Agents Chemother 53: 953–957. doi: 10.1128/AAC.00831-08
[13]
Ansede JH, Voyksner RD, Ismail MA, Boykin DW, Tidwell RR, et al. (2005) In vitro metabolism of an orally active O-methyl amidoxime prodrug for the treatment of CNS trypanosomiasis. Xenobiotica 35: 211–26. doi: 10.1080/00498250500087671
[14]
Bilik P, Tanious F, Kumar A, Wilson WD, Boykin DW, et al. (2001) Novel dications with unfused aromatic systems: Trithiophene and Trifuran derivatives of furimidazoline. Chem Bio Chem 2: 559–569. doi: 10.1002/1439-7633(20010803)2:7/8<559::aid-cbic559>3.0.co;2-u
[15]
Tidwell RR, Boykin DW (2003) Dicationic DNA minor groove binders as antimicrobial agents. In: Demeunynck M, Bailly C, Wilson WD, editors. Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes. pp. 414–460. Wiley, New York, Vol. 2.
[16]
Mathis AM, Holman JL, Sturk LM, Ismail MA, Boykin DW, et al. (2006) Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes. Antimicrob Agents Chemother 50: 2185–2191. doi: 10.1128/AAC.00192-06
[17]
Ismail MA, Brun R, Tanious FA, Wilson WD, Boykin DW (2003) Synthesis and anti-protozoal activity of aza-analogues of furamidine. J Med Chem 46: 4761–4769. doi: 10.1021/jm0302602
[18]
Fink E, Schmidt H (1980) Pre-clinical testing of potential trypanocidal drugs in primates: preliminary investigation of an experimental diamidine in vervets. In: Njogu AR, Tukei PM, Roberts JMD, editors. pp. 173–182. Recent Developments in Medical Research in East Africa, KEMRI/KETRI, Nairobi, Kenya.
[19]
Schmidt H, Sayer P (1982) T. b. rhodesiense infection in vervet monkeys. II. Provocation of the encephalitic late phase by treatment of infected monkeys. Tropenmed Parasitol 33: 255–259.
[20]
Gichuki C, Brun R (1999) Animal models of CNS (second-stage) sleeping sickness. In: Zak O, Sande M, editors. Handbook of animal models of infection Academic Press. London: United Kingdom. pp. 795–800.
[21]
Thuita JK, Kagira JM, Mwangangi DM, Matovu E, Turner CMR, et al. (2008b) Trypanosoma brucei rhodesiense transmitted by a single tsetse fly bite in vervet monkeys as a model of Human African Trypanosomiasis. PloS NTD 2: e238.
[22]
Wang MZ, Saulter JY, Usuki E, Cheung YL, Hall M, et al. (2006) CYP4F enzymes are the major enzymes in human liver microsomes that catalyze the O-demethylation of the antiparasitic prodrug DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-met?hylamidoxime]. Drug Metab Dispos 34: 1985–94. doi: 10.1124/dmd.106.010587
[23]
Ndung'u JM, Ngure RM, Ngotho JM, Sayer PD, Omuse JK (1994) Total protein and white cell changes in the cerebrospinal fluid of vervet monkeys infected with Trypanosoma rhodesiense and post-treatment reaction. J Protozool Res 4: 124–135.
[24]
OECD (2000) Guidance document on the recognition, assessment, and use of clinical signs as humane endpoints for experimental animals used in safety evaluation. Paris: OECD. 2000.
[25]
Woo PT (1970) The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Trop 27: 384–386. doi: 10.1201/9780203008799.ch6
[26]
Herbert WJ, Lumsden WHR (1976) Trypanosoma brucei: a rapid ‘matching’ method for estimating the host's parasitaemia. Exp Parasitol 40: 427–431. doi: 10.1016/0014-4894(76)90110-7
[27]
Miezan TW, Meda HA, Doua F, Dje NN, Lejon V (2000) Single centrifugation of cerebrospinal fluid in a sealed pasteur pipette for simple, rapid, and sensitive detection of trypanosomes. Trans R Soc Trop Med Hyg 94: 293. doi: 10.1016/S0035-9203(00)90327-4
[28]
Wang MZ, Zhu X, Srivastava A, Liu Q, Sweat JM, et al. (2010) Novel arylimidamides for treatment of visceral leishmaniasis. Antimocrob Agents Chemother 54: 2507–2516. doi:10.1128/AAC.00250–10.
[29]
Saulter JY, Kurian JR, Trepanier LA, Tidwell RR, Bridges AS, et al. (2005) Unusual dehydroxylation of antimicrobial amidoxime prodrugs by cytochrome b5 and NADH cytochrome b5 reductase. Drug Metab Dispos 33: 1886–93. doi: 10.1124/dmd.105.005017
[30]
Hall JE, Kerrigan JE, Ramachandran K, Bender BC, Stanko JP, et al. (1998) Anti-Pneumocystis activities of aromatic diamidoxime prodrugs. Antimicrob Agents Chemother 42: 666–74.
[31]
Fink E, Sayer P, Schmidt H (1983) IgG and IgM Levels in serum and CSF of T. rhodesiense-infected vervet monkeys. Contrib Microbiol Immunol 7: 183–189.
[32]
Sternberg JM, Njogu NM, Gichuki C, Ndung'u JM (2002) Nitric oxide production in vervet monkeys (Cercopithecus aethiops) infected with Trypanosoma brucei. Parasit Immunol 20: 395–397. doi:10.1046/j.1365-3024.1998.00164.x.
[33]
Schmidt H (1983) The pathogenesis of trypanosomiasis of the CNS: studies on parasitological and neurohistological findings in Trypanosoma rhodesiense infected vervet monkeys. Virchows Arch [Pathol Anat] 399: 333–343.
[34]
Midgley I, Fitzpatrick K, Taylor LM, Houchen TI, Henderson SI, et al. (2007) Pharmacokinetics and metabolism of the prodrug DB289 (2,5-bis[4-(n-methoxyamidino)phenyl]furan monomaleate) in rat and monkey and its conversion to the antiprotozoal/antifungal drug DB75 (2,5-bis(4-guanylphenyl)furan dihydrochloride). Drug Metab Dispos 35: 955–967. doi: 10.1124/dmd.106.013391
[35]
Bernhard SC (2006) Treatment of African trypanosomosis with DB75: pharmacokinetics, relapses and cross resistance. Ph.D. thesis, University of Basel, Switzerland.
[36]
Mathis AM, Holman JL, Sturk LM, Ismail MA, Boykin DW, et al. (2006) Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes. Antimicrob Agents Chemother 50: 2185–2191. doi: 10.1128/AAC.00192-06
[37]
Sanderson L, Dogruel M, Rodgers J, De Koning HP, Thomas SA (2009) Pentamidine Movement across the Murine Blood-Brain and Blood-Cerebrospinal Fluid Barriers: Effect of Trypanosome Infection, Combination Therapy, P-Glycoprotein, and Multidrug Resistance-Associated Protein. J Pharm Exp Ther 329: 967–977.
[38]
Nau R, S?rgel F, Eiffert H (2010) Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for Treatment of Central Nervous system infections Clin. Microbiol Rev 23(4): 858–883. DOI:10.1128/CMR.00007-10.
[39]
Kagira JM, Thuita JK, Ngotho JM, Mdachi RE, Mwangangi DM, et al. (2006) Haematology of experimental Trypanosoma brucei rhodesiense infection in vervet monkeys. Afr J Hlth Sci 13: 59–65. doi: 10.4314/ajhs.v13i3.30837
[40]
Moore DA, Edwards M, Escombe R, Agranoff D, Bailey JW, et al. (2002) African trypanosomiasis in travellers returning to the United Kingdom. Emerg Infect Dis 8: 74–76. doi: 10.3201/eid0801.010130
[41]
Clerinx J, Vlieghe E, Asselman V, Van de Casteele S, Maes MB, et al. (2012) Human African trypanosomiasis in a Belgian traveller returning from the Masai Mara area, Kenya. Euro Surveill 17(10): pii = 20111. Available from: http://www.eurosurveillance.org/ViewArti?cle.aspx?ArticleId=20111.
[42]
Chisi JE, Misiri H, Zverev Y, Nkhoma A, Sternberg JM (2004) Anaemia in human African trypanosomiasis caused by Trypanosoma brucei rhodesiense. East Afric Med J 81: 505–508. doi: 10.4314/ajhs.v13i3.30837
[43]
Terpstra V, van Berkel TJ (2000) Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 95: 2157–2163. doi: 10.4314/ajhs.v13i3.30837
[44]
Bowman ZS, Jollow DJ, McMillan DC (2005) Primaquine-induced hemolytic anemia: role of splenic macrophages in the fate of 5-hydroxyprimaquine-treated rat erythrocytes. J Pharmacol Exp Ther 315: 980–986. doi: 10.1124/jpet.105.090407
[45]
Sippel H, Estler CJ (1990) Comparative evaluation of hepatotoxic side effects of various new trypanocidal diamidines in rat hepatocytes and mice. Arzneimitteforshung 40: 290–293.
[46]
Steinmann U, Sippel H, Pesch HJ, Estler CJ (1991) Influence of pentamidine and two new trypanocidal agents (DAPI, DIPI) on liver metabolism of mice. Pharmacol Toxicol 69: 372–373. doi: 10.1111/j.1600-0773.1991.tb01314.x
[47]
Fromenty B, Pessayre D (1995) Inhibition of mitochondrial ?-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther 67: 101–154. doi: 10.1016/0163-7258(95)00012-6