[1] | Jimenez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, et al. (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18: 815–821.
|
[2] | Ohnishi S, Takano K (2004) Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci 61: 511–524.
|
[3] | Rousseau F, Schymkowitz J, Serrano L (2006) Protein aggregation and amyloidosis: Confusion of the kinds? Curr Opin Struct Biol 16: 118–126.
|
[4] | Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A 95: 4224–4228.
|
[5] | Chiti F, Webster P, Taddei N, Clark A, Stefani M, et al. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 96: 3590–3594.
|
[6] | Fandrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410: 165–166.
|
[7] | Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, et al. (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279: 31374–31382.
|
[8] | Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K (2003) The role of alpha-synuclein in Parkinson's disease: Insights from animal models. Nat Rev Neurosci 4: 727–738.
|
[9] | Ivanova MI, Sawaya MR, Gingery M, Attinger A, Eisenberg D (2004) An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci U S A 101: 10584–10589.
|
[10] | Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, et al. (2004) Low concentrations of sodium dodecyl sulfate induce the extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43: 11075–11082.
|
[11] | Pedersen JS, Christensen G, Otzen DE (2004) Modulation of S6 fibrillation by unfolding rates and gatekeeper residues. J Mol Biol 341: 575–588.
|
[12] | Yamin G, Munishkina LA, Karymov MA, Lyubchenko YL, Uversky VN, et al. (2005) Forcing nonamyloidogenic beta-synuclein to fibrillate. Biochemistry 44: 9096–9107.
|
[13] | Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: The importance of being unfolded. Biochim Biophys Acta 1698: 131–153.
|
[14] | Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci U S A 102: 315–320.
|
[15] | Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, et al. (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435: 747–749.
|
[16] | Fernandez A, Kardos J, Scott LR, Goto Y, Berry RS (2003) Structural defects and the diagnosis of amyloidogenic propensity. Proc Natl Acad Sci U S A 100: 6446–6451.
|
[17] | Yoon S, Welsh WJ (2004) Detecting hidden sequence propensity for amyloid fibril formation. Protein Sci 13: 2149–2160.
|
[18] | Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2005) Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 14: 2723–2734.
|
[19] | Lopez de la Paz M, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101: 87–92.
|
[20] | Esteras-Chopo A, Serrano L, Lopez de la Paz M (2005) The amyloid stretch hypothesis: Recruiting proteins toward the dark side. Proc Natl Acad Sci U S A 102: 16672–16677.
|
[21] | Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, et al. (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103: 4074–4078.
|
[22] | Trovato A, Chiti F, Maritan A, Seno F (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins . PLoS Comput Biol 2(12): e170.. doi:10.1371/journal.pcbi.0020170.
|
[23] | Gsponer J, Haberthur U, Caflisch A (2003) The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35. Proc Natl Acad Sci U S A 100: 5154–5159.
|
[24] | Khare SD, Wilcox KC, Gong P, Dokholyan NV (2005) Sequence and structural determinants of Cu, Zn superoxide dismutase aggregation. Proteins 61: 617–632.
|
[25] | Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: Re-assessing the protein structure–function paradigm. J Mol Biol 293: 321–331.
|
[26] | Dyson HJ, Wright PE (2002) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 62: 311–340.
|
[27] | Romero P, Obradovic Z, Dunker AK (2004) Natively disordered proteins: Functions and predictions. Appl Bioinformatics 3: 105–113.
|
[28] | Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15: 35–41.
|
[29] | Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272: 5129–5148.
|
[30] | Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6: 197–208.
|
[31] | Wootton JC (1994) Non-globular domains in protein sequences: Automated segmentation using complexity measures. Comput Chem 18: 269–285.
|
[32] | Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, et al. (1998) Protein disorder and the evolution of molecular recognition: Theory, predictions and observations. Pac Symp Biocomput. pp. 473–484.
|
[33] | Romero P, Obradovic Z, Kissinger CR, Villafranca JE, Garner E, et al. (1998) Thousands of proteins likely to have long disordered regions. Pac Symp Biocomput 3: 437–448.
|
[34] | Romero P, Obradovic Z, Dunker AK (1999) Folding minimal sequences: The lower bound for sequence complexity of globular proteins. FEBS Lett 462: 363–367.
|
[35] | Galzitskaya OV, Surin AK, Nakamura H (2000) Optimal region of average side-chain entropy for fast protein folding. Protein Sci 9: 580–586.
|
[36] | Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52: 573–584.
|
[37] | Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, et al. (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53: 566–572.
|
[38] | Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, et al. (2004) Protein flexibility and intrinsic disorder. Protein Sci 13: 71–80.
|
[39] | Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41: 415–427.
|
[40] | Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269: 2–12.
|
[41] | Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, et al. (2003) Protein disorder prediction: Implications for structural proteomics. Structure 11: 1453–1459.
|
[42] | Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20: 2138–2139.
|
[43] | Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347: 827–839.
|
[44] | Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2004) To be folded or to be unfolded? Protein Sci 13: 2871–2877.
|
[45] | Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) Prediction of natively unfolded regions in protein chain. Mol Biol (Moscow) 40: 341–348.
|
[46] | Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) FoldUnfold: Web server for the prediction of disordered regions in protein chain. Bioinformatics 22: 2948–2949.
|
[47] | Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16: 77–83.
|
[48] | Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2004) The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Protein Sci 13: 1939–1941.
|
[49] | Tracz SM, Abedini A, Driscoll M, Raleigh DP (2004) Role of aromatic interactions in amyloid formation by peptides derived from human amylin. Biochemistry 43: 15901–15908.
|
[50] | Bemporad F, Taddei N, Stefani M, Chiti F (2006) Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Sci 15: 862–870.
|
[51] | Fauchere II, Pliska V (1983) Hydrophobic parameters amino-acid side chains from partitioning of N-acetyl-amino-acid amides. Eur J Med Chem-Chim Ther 18: 369–375.
|
[52] | Minor DL Jr, Kim PS (1994) Context is a major determinant of beta-sheet propensity. Nature 371: 264–267.
|
[53] | Rudall KM (1952) The proteins of the mammalian epidermis. Adv Protein Chem 7: 253–290.
|
[54] | Von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, et al. (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A 97: 5129–5134.
|
[55] | Morrissey MP, Shakhnovich EI (1999) Evidence for the role of PrP(C) helix 1 in the hydrophilic seeding of prion aggregates. Proc Natl Acad Sci U S A 96: 11293–11298.
|
[56] | Speare JO, Rush IIITS, Bloom ME, Caughey B (2003) The role of helix 1 aspartates and salt bridges in the stability and conversion of prion protein. J Biol Chem 278: 12522–12529.
|
[57] | Thompson A, White AR, McLean C, Masters CL, Cappai R, et al. (2000) Amyloidogenicity and neurotoxicity of peptides corresponding to the helical regions of PrP(C). J Neurosci Res 62: 293–301.
|
[58] | Torrent J, Alvarez-Martinez MT, Liautard JP, Balny C, Lange R (2005) The role of the 132–160 region in prion protein conformational transitions. Protein Sci 14: 956–967.
|
[59] | Hamidi AK, Liepnieks JJ, Nakamura M, Parker F, Benson MD (1999) A novel apolipoprotein A-1 variant, Arg173Pro, associated with cardiac and cutaneous amyloidosis. Biochem Biophys Res Commun 257: 584–588.
|
[60] | Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, et al. (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 300: 541–549.
|
[61] | Frare E, Polverino de Laureto P, Zurdo J, Dobson CM, et al. (2004) A highly amyloidogenic region of hen lysozyme. J Mol Biol 340: 1153–1165.
|
[62] | Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HA, et al. (2000) Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys J 79: 3282–3293.
|
[63] | MacPhee CE, Dobson CM (2000) Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin. J Mol Biol 297: 1203–1215.
|
[64] | Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci U S A 99: 16748–16753.
|
[65] | Kozhukh GV, Hagihara Y, Kawakami T, Hasegawa K, Naiki H, et al. (2002) Investigation of a peptide responsible for amyloid fibril formation of beta 2-microglobulin by Achromobacter protease I. J Biol Chem 277: 1310–1315.
|
[66] | Jones S, Manning J, Kad NM, Radford SE (2003) Amyloid-forming peptides from beta2-microglobulin—Insights into the mechanism of fibril formation in vitro. J Mol Biol 325: 249–257.
|
[67] | Patel H, Bramall J, Waters H, De Beer MC, Woo P (1996) Expression of recombinant human serum amyloid A in mammalian cells and demonstration of the region necessary for high-density lipoprotein binding and amyloid fibril formation by site-directed mutagenesis. Biochem J 318: 1041–1049.
|
[68] | Reches M, Gazit E (2004) Amyloidogenic hexapeptide fragment of medin: Homology to functional islet amyloid polypeptide fragments. Amyloid 11: 81–89.
|
[69] | Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, et al. (1999) A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem 274: 12619–12625.
|
[70] | Torok M, Milton S, Kayed R, Wu P, McIntire T, et al. (2002) Structural and dynamic features of Alzheimer's Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277: 40810–40815.
|
[71] | Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276: 34156–34161.
|
[72] | Mazor Y, Gilead S, Benhar I, Gazit E (2002) Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide. J Mol Biol 322: 1013–1024.
|
[73] | Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, et al. (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90: 11282–11286.
|
[74] | Bodles AM, Irvine GB (2004) Alpha-synuclein aggregation. Protein Pept Lett 11: 271–279.
|
[75] | Haspel N, Zanuy D, Ma B, Wolfson H, Nussinov R (2005) A comparative study of amyloid fibril formation by residues 15–19 of the human calcitonin hormone: A single beta-sheet model with a small hydrophobic core. J Mol Biol 345: 1213–1227.
|
[76] | Vucetic S, Obradovic Z, Vacic V, Radivojac P, Peng K, et al. (2005) DisProt: A database of protein disorder. Bioinformatics 21: 137–140.
|
[77] | Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, et al. (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 101: 711–716.
|
[78] | Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540.
|
[79] | Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28: 45–48.
|