全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prediction of Amyloidogenic and Disordered Regions in Protein Chains

DOI: 10.1371/journal.pcbi.0020177

Full-Text   Cite this paper   Add to My Lib

Abstract:

The determination of factors that influence protein conformational changes is very important for the identification of potentially amyloidogenic and disordered regions in polypeptide chains. In our work we introduce a new parameter, mean packing density, to detect both amyloidogenic and disordered regions in a protein sequence. It has been shown that regions with strong expected packing density are responsible for amyloid formation. Our predictions are consistent with known disease-related amyloidogenic regions for eight of 12 amyloid-forming proteins and peptides in which the positions of amyloidogenic regions have been revealed experimentally. Our findings support the concept that the mechanism of amyloid fibril formation is similar for different peptides and proteins. Moreover, we have demonstrated that regions with weak expected packing density are responsible for the appearance of disordered regions. Our method has been tested on datasets of globular proteins and long disordered protein segments, and it shows improved performance over other widely used methods. Thus, we demonstrate that the expected packing density is a useful value with which one can predict both intrinsically disordered and amyloidogenic regions of a protein based on sequence alone. Our results are important for understanding the structural characteristics of protein folding and misfolding.

References

[1]  Jimenez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, et al. (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18: 815–821.
[2]  Ohnishi S, Takano K (2004) Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci 61: 511–524.
[3]  Rousseau F, Schymkowitz J, Serrano L (2006) Protein aggregation and amyloidosis: Confusion of the kinds? Curr Opin Struct Biol 16: 118–126.
[4]  Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A 95: 4224–4228.
[5]  Chiti F, Webster P, Taddei N, Clark A, Stefani M, et al. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 96: 3590–3594.
[6]  Fandrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410: 165–166.
[7]  Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, et al. (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279: 31374–31382.
[8]  Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K (2003) The role of alpha-synuclein in Parkinson's disease: Insights from animal models. Nat Rev Neurosci 4: 727–738.
[9]  Ivanova MI, Sawaya MR, Gingery M, Attinger A, Eisenberg D (2004) An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci U S A 101: 10584–10589.
[10]  Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, et al. (2004) Low concentrations of sodium dodecyl sulfate induce the extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43: 11075–11082.
[11]  Pedersen JS, Christensen G, Otzen DE (2004) Modulation of S6 fibrillation by unfolding rates and gatekeeper residues. J Mol Biol 341: 575–588.
[12]  Yamin G, Munishkina LA, Karymov MA, Lyubchenko YL, Uversky VN, et al. (2005) Forcing nonamyloidogenic beta-synuclein to fibrillate. Biochemistry 44: 9096–9107.
[13]  Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: The importance of being unfolded. Biochim Biophys Acta 1698: 131–153.
[14]  Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci U S A 102: 315–320.
[15]  Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, et al. (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435: 747–749.
[16]  Fernandez A, Kardos J, Scott LR, Goto Y, Berry RS (2003) Structural defects and the diagnosis of amyloidogenic propensity. Proc Natl Acad Sci U S A 100: 6446–6451.
[17]  Yoon S, Welsh WJ (2004) Detecting hidden sequence propensity for amyloid fibril formation. Protein Sci 13: 2149–2160.
[18]  Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2005) Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 14: 2723–2734.
[19]  Lopez de la Paz M, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101: 87–92.
[20]  Esteras-Chopo A, Serrano L, Lopez de la Paz M (2005) The amyloid stretch hypothesis: Recruiting proteins toward the dark side. Proc Natl Acad Sci U S A 102: 16672–16677.
[21]  Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, et al. (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103: 4074–4078.
[22]  Trovato A, Chiti F, Maritan A, Seno F (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins . PLoS Comput Biol 2(12): e170.. doi:10.1371/journal.pcbi.0020170.
[23]  Gsponer J, Haberthur U, Caflisch A (2003) The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35. Proc Natl Acad Sci U S A 100: 5154–5159.
[24]  Khare SD, Wilcox KC, Gong P, Dokholyan NV (2005) Sequence and structural determinants of Cu, Zn superoxide dismutase aggregation. Proteins 61: 617–632.
[25]  Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: Re-assessing the protein structure–function paradigm. J Mol Biol 293: 321–331.
[26]  Dyson HJ, Wright PE (2002) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 62: 311–340.
[27]  Romero P, Obradovic Z, Dunker AK (2004) Natively disordered proteins: Functions and predictions. Appl Bioinformatics 3: 105–113.
[28]  Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15: 35–41.
[29]  Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272: 5129–5148.
[30]  Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6: 197–208.
[31]  Wootton JC (1994) Non-globular domains in protein sequences: Automated segmentation using complexity measures. Comput Chem 18: 269–285.
[32]  Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, et al. (1998) Protein disorder and the evolution of molecular recognition: Theory, predictions and observations. Pac Symp Biocomput. pp. 473–484.
[33]  Romero P, Obradovic Z, Kissinger CR, Villafranca JE, Garner E, et al. (1998) Thousands of proteins likely to have long disordered regions. Pac Symp Biocomput 3: 437–448.
[34]  Romero P, Obradovic Z, Dunker AK (1999) Folding minimal sequences: The lower bound for sequence complexity of globular proteins. FEBS Lett 462: 363–367.
[35]  Galzitskaya OV, Surin AK, Nakamura H (2000) Optimal region of average side-chain entropy for fast protein folding. Protein Sci 9: 580–586.
[36]  Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52: 573–584.
[37]  Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, et al. (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53: 566–572.
[38]  Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, et al. (2004) Protein flexibility and intrinsic disorder. Protein Sci 13: 71–80.
[39]  Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41: 415–427.
[40]  Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269: 2–12.
[41]  Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, et al. (2003) Protein disorder prediction: Implications for structural proteomics. Structure 11: 1453–1459.
[42]  Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20: 2138–2139.
[43]  Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347: 827–839.
[44]  Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2004) To be folded or to be unfolded? Protein Sci 13: 2871–2877.
[45]  Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) Prediction of natively unfolded regions in protein chain. Mol Biol (Moscow) 40: 341–348.
[46]  Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) FoldUnfold: Web server for the prediction of disordered regions in protein chain. Bioinformatics 22: 2948–2949.
[47]  Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16: 77–83.
[48]  Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2004) The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Protein Sci 13: 1939–1941.
[49]  Tracz SM, Abedini A, Driscoll M, Raleigh DP (2004) Role of aromatic interactions in amyloid formation by peptides derived from human amylin. Biochemistry 43: 15901–15908.
[50]  Bemporad F, Taddei N, Stefani M, Chiti F (2006) Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Sci 15: 862–870.
[51]  Fauchere II, Pliska V (1983) Hydrophobic parameters amino-acid side chains from partitioning of N-acetyl-amino-acid amides. Eur J Med Chem-Chim Ther 18: 369–375.
[52]  Minor DL Jr, Kim PS (1994) Context is a major determinant of beta-sheet propensity. Nature 371: 264–267.
[53]  Rudall KM (1952) The proteins of the mammalian epidermis. Adv Protein Chem 7: 253–290.
[54]  Von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, et al. (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A 97: 5129–5134.
[55]  Morrissey MP, Shakhnovich EI (1999) Evidence for the role of PrP(C) helix 1 in the hydrophilic seeding of prion aggregates. Proc Natl Acad Sci U S A 96: 11293–11298.
[56]  Speare JO, Rush IIITS, Bloom ME, Caughey B (2003) The role of helix 1 aspartates and salt bridges in the stability and conversion of prion protein. J Biol Chem 278: 12522–12529.
[57]  Thompson A, White AR, McLean C, Masters CL, Cappai R, et al. (2000) Amyloidogenicity and neurotoxicity of peptides corresponding to the helical regions of PrP(C). J Neurosci Res 62: 293–301.
[58]  Torrent J, Alvarez-Martinez MT, Liautard JP, Balny C, Lange R (2005) The role of the 132–160 region in prion protein conformational transitions. Protein Sci 14: 956–967.
[59]  Hamidi AK, Liepnieks JJ, Nakamura M, Parker F, Benson MD (1999) A novel apolipoprotein A-1 variant, Arg173Pro, associated with cardiac and cutaneous amyloidosis. Biochem Biophys Res Commun 257: 584–588.
[60]  Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, et al. (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 300: 541–549.
[61]  Frare E, Polverino de Laureto P, Zurdo J, Dobson CM, et al. (2004) A highly amyloidogenic region of hen lysozyme. J Mol Biol 340: 1153–1165.
[62]  Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HA, et al. (2000) Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys J 79: 3282–3293.
[63]  MacPhee CE, Dobson CM (2000) Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin. J Mol Biol 297: 1203–1215.
[64]  Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci U S A 99: 16748–16753.
[65]  Kozhukh GV, Hagihara Y, Kawakami T, Hasegawa K, Naiki H, et al. (2002) Investigation of a peptide responsible for amyloid fibril formation of beta 2-microglobulin by Achromobacter protease I. J Biol Chem 277: 1310–1315.
[66]  Jones S, Manning J, Kad NM, Radford SE (2003) Amyloid-forming peptides from beta2-microglobulin—Insights into the mechanism of fibril formation in vitro. J Mol Biol 325: 249–257.
[67]  Patel H, Bramall J, Waters H, De Beer MC, Woo P (1996) Expression of recombinant human serum amyloid A in mammalian cells and demonstration of the region necessary for high-density lipoprotein binding and amyloid fibril formation by site-directed mutagenesis. Biochem J 318: 1041–1049.
[68]  Reches M, Gazit E (2004) Amyloidogenic hexapeptide fragment of medin: Homology to functional islet amyloid polypeptide fragments. Amyloid 11: 81–89.
[69]  Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, et al. (1999) A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem 274: 12619–12625.
[70]  Torok M, Milton S, Kayed R, Wu P, McIntire T, et al. (2002) Structural and dynamic features of Alzheimer's Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277: 40810–40815.
[71]  Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276: 34156–34161.
[72]  Mazor Y, Gilead S, Benhar I, Gazit E (2002) Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide. J Mol Biol 322: 1013–1024.
[73]  Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, et al. (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90: 11282–11286.
[74]  Bodles AM, Irvine GB (2004) Alpha-synuclein aggregation. Protein Pept Lett 11: 271–279.
[75]  Haspel N, Zanuy D, Ma B, Wolfson H, Nussinov R (2005) A comparative study of amyloid fibril formation by residues 15–19 of the human calcitonin hormone: A single beta-sheet model with a small hydrophobic core. J Mol Biol 345: 1213–1227.
[76]  Vucetic S, Obradovic Z, Vacic V, Radivojac P, Peng K, et al. (2005) DisProt: A database of protein disorder. Bioinformatics 21: 137–140.
[77]  Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, et al. (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 101: 711–716.
[78]  Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540.
[79]  Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28: 45–48.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133