全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology

DOI: 10.1371/journal.pcbi.1000867

Full-Text   Cite this paper   Add to My Lib

Abstract:

Large-scale genome sequencing gained general importance for life science because functional annotation of otherwise experimentally uncharacterized sequences is made possible by the theory of biomolecular sequence homology. Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. Having the same fold imposes strict conditions over the packing in the hydrophobic core requiring similarity of hydrophobic patterns. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Thus, matching of SPs/TMs creates the illusion of matching hydrophobic cores. Therefore, inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809) contain SP/TM regions. As expected, fragment-mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, we show explicit examples that the scores of clearly false-positive hits, even in global-mode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, we find that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false-positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. We suggest a workflow of flagging problematic hits arising from SP/TM-containing models for critical reconsideration by annotation users.

References

[1]  Eisenhaber F (2006) Prediction of Protein Function: Two Basic Concepts and One Practical Recipe. In: Eisenhaber F, editor. Discovering Biomolecular Mechanisms with Computational Biology. Georgetown and New York: Landes Biosciences and Springer. pp. 39–54.
[2]  Ooi HS, Kwo CY, Wildpaner M, Sirota FL, Eisenhaber B, et al. (2009) ANNIE: integrated de novo protein sequence annotation. Nucleic Acids Res 37: W435–W440.
[3]  Sammut SJ, Finn RD, Bateman A (2008) Pfam 10 years on: 10,000 families and still growing. Brief Bioinform 9: 210–219.
[4]  Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, et al. (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12: 323–328.
[5]  Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, et al. (1998) Predicting function: from genes to genomes and back. J Mol Biol 283: 707–725.
[6]  Eisenhaber F (2006) Bioinformatics: Mystery, Astrology or Service Technology. In: Eisenhaber F, editor. Discovering Biomolecular Mechanisms with Computational Biology. Georgetown and New York: Landes Biosciences and Springer. pp. 1–10.
[7]  Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41: 98–107.
[8]  Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9: 56–68.
[9]  Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 307: 1113–1143.
[10]  Bork P, Gibson TJ (1996) Applying motif and profile searches. Methods Enzymol 266: 162–184.
[11]  Gough J (2005) Convergent evolution of domain architectures (is rare). Bioinformatics 21: 1464–1471.
[12]  Doolittle RF (1994) Convergent evolution: the need to be explicit. Trends Biochem Sci 19: 15–18.
[13]  Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89: 10915–10919.
[14]  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[15]  Altschul SF, Gertz EM, Agarwala R, Schaffer AA, Yu YK (2009) PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res 37: 815–824.
[16]  Eisenhaber F, Bork P (1998) Sequence and Structure of Proteins. In: Schomburg D, editor. Recombinant proteins, monoclonal antibodies and theraeutic genes. Weinheim: Wiley-VCH. pp. 43–86.
[17]  Holland TA, Veretnik S, Shindyalov IN, Bourne PE (2006) Partitioning protein structures into domains: why is it so difficult? J Mol Biol 361: 562–590.
[18]  Veretnik S, Bourne PE, Alexandrov NN, Shindyalov IN (2004) Toward consistent assignment of structural domains in proteins. J Mol Biol 339: 647–678.
[19]  Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, et al. (2008) The 20 years of PROSITE. Nucleic Acids Res 36: D245–D249.
[20]  Henikoff JG, Greene EA, Taylor N, Henikoff S, Pietrokovski S (2002) Using the blocks database to recognize functional domains. Curr Protoc Bioinformatics Chapter 2: Unit.
[21]  Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, et al. (2003) PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res 31: 400–402.
[22]  Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, et al. (2009) SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37: D380–D386.
[23]  Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, Weese-Scott C, et al. (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37: D205–D210.
[24]  Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M, et al. (2007) TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res 35: D260–D264.
[25]  Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, et al. (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33: D284–D288.
[26]  Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S, et al. (2005) The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res 33: D212–D215.
[27]  Portugaly E, Linial N, Linial M (2007) EVEREST: a collection of evolutionary conserved protein domains. Nucleic Acids Res 35: D241–D246.
[28]  Schaffer AA, Wolf YI, Ponting CP, Koonin EV, Aravind L, et al. (1999) IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 15: 1000–1011.
[29]  Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37: D229–D232.
[30]  Eisenhaber B, Eisenhaber F (2005) Sequence complexity of proteins and its significance in annotation. In: Subramaniam S, editor. “Bioinformatics” in the Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. New York: Wiley Interscience. DOI:10.1002/047001153X.g403313.
[31]  Eisenhaber B, Eisenhaber F (2007) Posttranslational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure? Curr Protein Pept Sci 8: 197–203.
[32]  Tompa P, Dosztanyi Z, Simon I (2006) Prevalent structural disorder in E. coli and S. cerevisiae proteomes. J Proteome Res 5: 1996–2000.
[33]  Bendtsen JD, Nielsen H, von HG, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795.
[34]  Eisenhaber B, Bork P, Eisenhaber F (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng 11: 1155–1161.
[35]  Eisenhaber B, Bork P, Eisenhaber F (1999) Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 292: 741–758.
[36]  Gruber M, Soding J, Lupas AN (2006) Comparative analysis of coiled-coil prediction methods. J Struct Biol 155: 140–145.
[37]  Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, et al. (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29: 2994–3005.
[38]  Stojmirovic A, Gertz EM, Altschul SF, Yu YK (2008) The effectiveness of position- and composition-specific gap costs for protein similarity searches. Bioinformatics 24: i15–i23.
[39]  Schneider G, Neuberger G, Wildpaner M, Tian S, Berezovsky I, et al. (2006) Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinformatics 7: 164.
[40]  Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95: 5857–5864.
[41]  Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, et al. (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36: D419–D425.
[42]  Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540.
[43]  Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, et al. (2000) The Pfam protein families database. Nucleic Acids Res 28: 263–266.
[44]  Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, et al. (1999) Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res 27: 260–262.
[45]  Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26: 320–322.
[46]  Bernsel A, Viklund H, Elofsson A (2008) Remote homology detection of integral membrane proteins using conserved sequence features. Proteins 71: 1387–1399.
[47]  Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis: Probabilistic models of proteins and nucleic acids.
[48]  Eddy SR (2004) What is a hidden Markov model? Nat Biotechnol 22: 1315–1316.
[49]  Eddy SR (2008) A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol 4: e1000069.
[50]  Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, et al. (2000) Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J 19: 4402–4411.
[51]  Janssen R, Smeitink J, Smeets R, van Den HL (2002) CIA30 complex I assembly factor: a candidate for human complex I deficiency? Hum Genet 110: 264–270.
[52]  Sun L, Gu S, Sun Y, Zheng D, Wu Q, et al. (2005) Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2. Mol Cell Biochem 272: 91–96.
[53]  Ciufo LF, Boyd A (2000) Identification of a lumenal sequence specifying the assembly of Emp24p into p24 complexes in the yeast secretory pathway. J Biol Chem 275: 8382–8388.
[54]  Kihara A, Sakuraba H, Ikeda M, Denpoh A, Igarashi Y (2008) Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation. J Biol Chem 283: 11199–11209.
[55]  Uwanogho DA, Hardcastle Z, Balogh P, Mirza G, Thornburg KL, et al. (1999) Molecular cloning, chromosomal mapping, and developmental expression of a novel protein tyrosine phosphatase-like gene. Genomics 62: 406–416.
[56]  Fukuda M (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266: 21327–21330.
[57]  Settles AM, Yonetani A, Baron A, Bush DR, Cline K, et al. (1997) Sec-independent protein translocation by the maize Hcf106 protein. Science 278: 1467–1470.
[58]  Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176: 111–116.
[59]  Scheres B, van EF, van der KE, van de WC, van KA, et al. (1990) Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2: 687–700.
[60]  de Oliveira DE, Seurinck J, Inze D, Van MM, Botterman J (1990) Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2: 427–436.
[61]  Ohnishi S, Paakkonen K, Koshiba S, Tochio N, Sato M, et al. (2009) Solution structure of the GUCT domain from human RNA helicase II/Gu beta reveals the RRM fold, but implausible RNA interactions. Proteins 74: 133–144.
[62]  Burgess DL, Gefrides LA, Foreman PJ, Noebels JL (2001) A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family. Genomics 71: 339–350.
[63]  Ouzounis CA, Karp PD (2002) The past, present and future of genome-wide re-annotation. Genome Biol 3: COMMENT2001.
[64]  Gilks WR, Audit B, de AD, Tsoka S, Ouzounis CA (2002) Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics 18: 1641–1649.
[65]  Gilks WR, Audit B, de AD, Tsoka S, Ouzounis CA (2005) Percolation of annotation errors through hierarchically structured protein sequence databases. Math Biosci 193: 223–234.
[66]  Wu CH, Huang H, Nikolskaya A, Hu Z, Barker WC (2004) The iProClass integrated database for protein functional analysis. Comput Biol Chem 28: 87–96.
[67]  Bahr A, Thompson JD, Thierry JC, Poch O (2001) BAliBASE (Benchmark Alignment dataBASE): enhancements for repeats, transmembrane sequences and circular permutations. Nucleic Acids Res 29: 323–326.
[68]  Ikeda M, Arai M, Okuno T, Shimizu T (2003) TMPDB: a database of experimentally-characterized transmembrane topologies. Nucleic Acids Res 31: 406–409.
[69]  Hooft RW, Sander C, Scharf M, Vriend G (1996) The PDBFINDER database: a summary of PDB, DSSP and HSSP information with added value. Comput Appl Biosci 12: 525–529.
[70]  Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.
[71]  Wootton JC, Federhen S (1996) Analysis of compositionally biased regions in sequence databases. Methods Enzymol 266: 554–571.
[72]  Bork P, Koonin EV (1998) Predicting functions from protein sequences–where are the bottlenecks? Nat Genet 18: 313–318.
[73]  Cuff AL, Sillitoe I, Lewis T, Redfern OC, Garratt R, et al. (2009) The CATH classification revisited–architectures reviewed and new ways to characterize structural divergence in superfamilies. Nucleic Acids Res 37: D310–D314.
[74]  Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5: e1000605.
[75]  Ponting CP, Schultz J, Copley RR, Andrade MA, Bork P (2000) Evolution of domain families. Adv Protein Chem 54: 185–244.
[76]  Ponting CP, Russell RR (2002) The natural history of protein domains. Annu Rev Biophys Biomol Struct 31: 45–71.
[77]  Copley RR, Letunic I, Bork P (2002) Genome and protein evolution in eukaryotes. Curr Opin Chem Biol 6: 39–45.
[78]  Hedman M, Deloof H, von HG, Elofsson A (2002) Improved detection of homologous membrane proteins by inclusion of information from topology predictions. Protein Sci 11: 652–658.
[79]  Anantharaman V, Aravind L (2010) Novel eukaryotic enzymes modifying cell-surface biopolymers. Biol Direct 5: 1.
[80]  Schultz J (2004) HTTM, a horizontally transferred transmembrane domain. Trends Biochem Sci 29: 4–7.
[81]  Sonnhammer EL, von HG, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6: 175–182.
[82]  Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34: D181–D186.
[83]  Yen MR, Choi J, Saier MH Jr (2009) Bioinformatic analyses of transmembrane transport: novel software for deducing protein phylogeny, topology, and evolution. J Mol Microbiol Biotechnol 17: 163–176.
[84]  Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2010) The Pfam protein families database. Nucleic Acids Res 38: D211–D222.
[85]  Cserzo M, Eisenhaber F, Eisenhaber B, Simon I (2002) On filtering false positive transmembrane protein predictions. Protein Eng 15: 745–752.
[86]  Cserzo M, Eisenhaber F, Eisenhaber B, Simon I (2004) TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter. Bioinformatics 20: 136–137.
[87]  Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283: 489–506.
[88]  Brendel V, Bucher P, Nourbakhsh IR, Blaisdell BE, Karlin S (1992) Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A 89: 2002–2006.
[89]  Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: 1027–1036.
[90]  Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35: W429–W432.
[91]  Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8: 581–599.
[92]  Zar JH (10-18-1998) Biostatistical analysis. Upper Saddle River: Pearson Prentice Hall.
[93]  Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31: 532–550.
[94]  Klug A, Schwabe JW (1995) Protein motifs 5. Zinc fingers. FASEB J 9: 597–604.
[95]  Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58: 625–635.
[96]  Leon O, Roth M (2000) Zinc fingers: DNA binding and protein-protein interactions. Biol Res 33: 21–30.
[97]  Alberts IL, Nadassy K, Wodak SJ (1998) Analysis of zinc binding sites in protein crystal structures. Protein Sci 7: 1700–1716.
[98]  Ren J, Wen L, Gao X, Jin C, Xue Y, et al. (2009) DOG 1.0: illustrator of protein domain structures. Cell Res 19: 271–273.
[99]  Johansson H, Eriksson M, Nordling K, Presto J, Johansson J (2009) The Brichos domain of prosurfactant protein C can hold and fold a transmembrane segment. Protein Sci 18: 1175–1182.
[100]  Shin JI, Shin JY, Kim JS, Yang YS, Shin YK, et al. (2008) Deep membrane insertion of prion protein upon reduction of disulfide bond. Biochem Biophys Res Commun 377: 995–1000.
[101]  Tompa P, Tusnady GE, Cserzo M, Simon I (2001) Prion protein: evolution caught en route. Proc Natl Acad Sci U S A 98: 4431–4436.
[102]  Verelst W, Asard H (2003) A phylogenetic study of cytochrome b561 proteins. Genome Biol 4: R38.
[103]  Ponting CP, Mott R, Bork P, Copley RR (2001) Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. Genome Res 11: 1996–2008.
[104]  Kageyama-Yahara N, Riezman H (2006) Transmembrane topology of ceramide synthase in yeast. Biochem J 398: 585–593.
[105]  Nakai T, Yamasaki A, Sakaguchi M, Kosaka K, Mihara K, et al. (1999) Membrane topology of Alzheimer's disease-related presenilin 1. Evidence for the existence of a molecular species with a seven membrane-spanning and one membrane-embedded structure. J Biol Chem 274: 23647–23658.
[106]  Tie JK, Nicchitta C, von HG, Stafford DW (2005) Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation. J Biol Chem 280: 16410–16416.
[107]  Ashida H, Hong Y, Murakami Y, Shishioh N, Sugimoto N, et al. (2005) Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltra?nsferaseI. Mol Biol Cell 16: 1439–1448.
[108]  Kota J, Ljungdahl PO (2005) Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J Cell Biol 168: 79–88.
[109]  Zhang L, Ji G (2004) Identification of a staphylococcal AgrB segment(s) responsible for group-specific processing of AgrD by gene swapping. J Bacteriol 186: 6706–6713.
[110]  Pizarro JC, Vulliez-Le NB, Chesne-Seck ML, Collins CR, Withers-Martinez C, et al. (2005) Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science 308: 408–411.
[111]  Xu C, Rice WJ, He W, Stokes DL (2002) A structural model for the catalytic cycle of Ca(2+)-ATPase. J Mol Biol 316: 201–211.
[112]  Smith LJ, Redfield C, Boyd J, Lawrence GM, Edwards RG, et al. (1992) Human interleukin 4. The solution structure of a four-helix bundle protein. J Mol Biol 224: 899–904.
[113]  Weston SA, Lahm A, Suck D (1992) X-ray structure of the DNase I-d()2 complex at 2.3 A resolution. J Mol Biol 226: 1237–1256.
[114]  Clark GC, Briggs DC, Karasawa T, Wang X, Cole AR, et al. (2003) Clostridium absonum alpha-toxin: new insights into clostridial phospholipase C substrate binding and specificity. J Mol Biol 333: 759–769.
[115]  McNulty JC, Jackson PJ, Thompson DA, Chai B, Gantz I, et al. (2005) Structures of the agouti signaling protein. J Mol Biol 346: 1059–1070.
[116]  Krebsbach PH, Lee SK, Matsuki Y, Kozak CA, Yamada KM, et al. (1996) Full-length sequence, localization, and chromosomal mapping of ameloblastin. A novel tooth-specific gene. J Biol Chem 271: 4431–4435.
[117]  Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak , et al. (2006) Crystal structure of the CorA Mg2+ transporter. Nature 440: 833–837.
[118]  Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, et al. (1998) A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93: 93–101.
[119]  Abendroth J, Rice AE, McLuskey K, Bagdasarian M, Hol WG (2004) The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J Mol Biol 338: 585–596.
[120]  Albrecht R, Rehling P, Chacinska A, Brix J, Cadamuro SA, Volkmer R, et al. (2006) The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes. EMBO Rep 7: 1233–1238.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133