全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia

DOI: 10.1371/journal.pcbi.1000874

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cell migration in the absence of external cues is well described by a correlated random walk. Most single cells move by extending protrusions called pseudopodia. To deduce how cells walk, we have analyzed the formation of pseudopodia by Dictyostelium cells. We have observed that the formation of pseudopodia is highly ordered with two types of pseudopodia: First, de novo formation of pseudopodia at random positions on the cell body, and therefore in random directions. Second, pseudopod splitting near the tip of the current pseudopod in alternating right/left directions, leading to a persistent zig-zag trajectory. Here we analyzed the probability frequency distributions of the angles between pseudopodia and used this information to design a stochastic model for cell movement. Monte Carlo simulations show that the critical elements are the ratio of persistent splitting pseudopodia relative to random de novo pseudopodia, the Left/Right alternation, the angle between pseudopodia and the variance of this angle. Experiments confirm predictions of the model, showing reduced persistence in mutants that are defective in pseudopod splitting and in mutants with an irregular cell surface.

References

[1]  Pollard TD (2003) The cytoskeleton, cellular motility and the reductionist agenda. Nature 422: 741–745.
[2]  Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity. Annu Rev Biophys 2.
[3]  Bahat A, Eisenbach M (2006) Sperm thermotaxis. Mol Cell Endocrinol 252: 115–119.
[4]  Zhao M (2009) Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol 20: 674–682.
[5]  Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15: 311–338.
[6]  Potel MJ, Mackay SA (1979) Preaggregative cell motion in Dictyostelium. J Cell Sci 36: 281–309.
[7]  Gail MH, Boone CW (1970) The locomotion of mouse fibroblasts in tissue culture. Biophys J 10: 980–993.
[8]  Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 15: 15.
[9]  Hall RL (1977) Amoeboid movement as a correlated walk. J Math Biol 4: 327–335.
[10]  Lomholt MA, Tal K, Metzler R, Joseph K (2008) Lévy strategies in intermittent search processes are advantageous. Proc Natl Acad Sci USA 105: 11055–11059.
[11]  Bosgraaf L, van Haastert PJM (2009) Quimp3, an Automated Pseudopod-tracking Algorithm. Cell Adh Migr 4:
[12]  Bosgraaf L, van Haastert PJM (2009) The Ordered Extension of Pseudopodia by Amoeboid Cell in the Absence of external Cues. PLoS ONE 4: e5253. doi:10.1371/journal.pone.0005253.
[13]  Andrew N, Insall RH (2007) Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nat Cell Biol 9: 193–200.
[14]  Li L, Norrelykke SF, Cox EC (2008) Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS ONE 3: e2093. doi:10.1371/journal.pone.0002093.
[15]  Chung CY, Funamoto S, Firtel RA (2001) Signaling pathways controlling cell polarity and chemotaxis. TIBS 26: 557–566.
[16]  Chen L, Iijima M, Tang M, Landree MA, Huang YE, et al. (2007) PLA(2) and PI3K/PTEN Pathways Act in Parallel to Mediate Chemotaxis. Dev Cell 12: 603–614.
[17]  Veltman DM, Van Haastert PJM (2006) Guanylyl cyclase protein and cGMP product independently control front and back of chemotaxing Dictyostelium cells. Mol Biol Cell 17: 3921–3929.
[18]  Veltman DM, Keizer-Gunnink I, Van Haastert PJM (2008) Four key signaling pathways mediating chemotaxis in Dictyostelium discoideum. J Cell Biol 180: 747–753.
[19]  Schirenbeck A, Bretschneider T, Arasada R, Schleicher M, Faix J (2005) The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 7: 619–625.
[20]  Van Haastert PJ, Bosgraaf L (2009) Food searching strategy of amoeboid cells by starvation induced run length extension. PLoS One 4: e6814. doi:10.1371/journal.pone.0006814.
[21]  Bosgraaf L, Van Haastert PJM, Bretschneider T (2009) Analysis of cell movement by simultaneous quantification of local membrane displacement and fluorescent intensities using Quimp2. Cell Motil Cytoskel 66: 156–165.
[22]  Bartumeus F, Catalan J, Viswanathan GM, Raposo EP, da Luz MG (2008) The influence of turning angles on the success of non-oriented animal searches. J Theor Biol 252: 43–55.
[23]  Fürth R (1920) Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Mit Anwendungen auf die Bewegung lebender Infusorien. Z Physik 2: 244–256.
[24]  Tchen CM (1952) Random flight with multiplre partial correlations. J Chem Phys 20: 214–217.
[25]  Wu H-I, Li B-L, Springer TA, Neill WH (2000) Modelling animal movement as a persistent random walk in two dimensions: expected magnitude of nett displacement. Ecol Model 132: 115–124.
[26]  Bosgraaf L, Postma M, Veltman DM, Van Haastert PJM (2008) The extension of pseudopodia by amoeboid cells in the absence of external cues. accompanying manuscript.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133