[1] | Fernando C, Liekens AML, Bingle LEH, Beck C, Lenser T, et al. (2008) Molecular circuits for associative learning in single-celled organisms. J Roy Soc Interface 6: 463–9. doi: 10.1098/rsif.2008.0344
|
[2] | Gandhi N, Ashkenasy G, Tannenbaum E (2007) Associative Learning in biochemical networks. J Theor Biol 249: 58–66. doi: 10.1016/j.jtbi.2007.07.004
|
[3] | Magnasco MO (1997) Chemical kinetics is Turing Universal. Phys Rev Lett 78: 1190–1193. doi: 10.1103/physrevlett.78.1190
|
[4] | Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and Turing machines. Proc Natl Acad Sci U S A 88: 10983–10987. doi: 10.1073/pnas.88.24.10983
|
[5] | Goldstein R, Soyer OS (2008) Evolution of the Taxis Responses in Virtual Bacteria: Non-Adaptive Dynamics. PLoS Comput Biol 4: e10000084. doi: 10.1371/journal.pcbi.1000084
|
[6] | Parter M, Kashtan N, Alon U (2008) Facilitated Variation: How Evolution Learns from Past Environments to Generalize to New Environments. PLoS Comput Biol 4: e1000206. doi: 10.1371/journal.pcbi.1000206
|
[7] | Bray D (2003) Molecular Networks: The Top-Down View. Science 26: 1864–1865. doi: 10.1126/science.1089118
|
[8] | Bray D, Lay S (1994) Computer simulated evolution of a network of cell-signaling molecules. Biophys J 66: 972–977. doi: 10.1016/s0006-3495(94)80878-1
|
[9] | Paladugu SR, Chickarmane V, Deckard A, Frumkin JP, McCormack M, et al. (2006) In silico evolution of functional modules in biochemical networks. Syst Biol 153: 223–235. doi: 10.1049/ip-syb:20050096
|
[10] | Holland JH (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.
|
[11] | Fogel DB (2006) Evolutionary Computation: Toward a New Pholosophy of Machine Intelligence. Piscataway, NJ: Wiley-Interscience.
|
[12] | Baeck T, Fogel DB, Michalewicz ZM (1997) Handbook of Evolutionary Computation New York: Taylor and Francis Group.
|
[13] | Phattanasri P, Chiel HJ, Beer RD (2007) The dynamics of associative learning in evolved model circuits. Adapt Behav 15: 377–396. doi: 10.1177/1059712307084688
|
[14] | Bagley RJ, Farmer JD, Fontana W. (1992) Evolution of a Metabolism. In: Langton CG, Taylor C, Farmer JD, Rasmussen S, editors. Artificial Life II, Proceedings. Santa Fe: Addison-Wesley.
|
[15] | Fontana W, Buss LW (1994) What would be conserved if ‘the tape were played twice’? Proc Natl Acad Sci U S A 91: 757–761. doi: 10.1073/pnas.91.2.757
|
[16] | Fernando C, Rowe J (2007) Natural Selection in Chemical Evolution. J Theor Biol 247: 152–167. doi: 10.1016/j.jtbi.2007.01.028
|
[17] | Fernando C, Rowe J (2008) The origin of autonomous agents by natural selection. Biosystems 91: 355–373. doi: 10.1016/j.biosystems.2007.05.012
|
[18] | Vasas V, Fernando CT, Santos M, Kauffman SA, Szathmáry E (2012) Evolution before genes. Biology Direct 7 In press. doi: 10.1186/1745-6150-7-1
|
[19] | Dayan P, Abbott L (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press.
|
[20] | Mackintosh NJ (1974) The psychology of animal learning. Oxford, England: Academic Press.
|
[21] | Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF, editors. Classical Conditioning II: Current Research and Theory. Appleton-Century-Crofts. pp. 64–99.
|
[22] | Kamin LJ (1969) Predictability, surprise, attention and conditioning. In: Campbell BA, Church RM, editors. Punishment and aversive behavior. New York: Appleton-Century-Crofts. pp. 279–296.
|
[23] | Gopnik A, Schulz L (2004) Mechanisms of theory formation in young children. Trends in Cogn Sci 8: 371–377. doi: 10.1016/j.tics.2004.06.005
|
[24] | Barber D (2012) Bayesian Reasoning and Machine Learning. Cambridge University Press.
|
[25] | Libby E, Perkins TJ, Swain PS (2007) Noisy information processing through transcriptional regulation. Proc Natl Acad Sci U S A 104: 7151–7156. doi: 10.1073/pnas.0608963104
|
[26] | Maass W, Markram H (2004) On the computational power of recurrent circuits of spiking neurons. J Comput Syst Sci 69: 593–616. doi: 10.1016/j.jcss.2004.04.001
|
[27] | Maass W, Natschl?ger T, Markram H (2002) Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Comput 14: 2531–2560. doi: 10.1162/089976602760407955
|
[28] | Jaeger H, Maass W, Principe J (2007) Introduction to the special issue on echo state networks and liquid state machines. Neural Netw 20: 287–289. doi: 10.1016/j.neunet.2007.04.001
|
[29] | Bingham E, Mannila H (2001) Random projection in dimensionality reduction: Applications to image and text data. Data Min Knowl Discov 245–250. doi: 10.1145/502512.502546
|
[30] | Hennessey T (1979) Classical Conditioning in Paramecia. Anim Learn Behav 7: 419–423. doi: 10.3758/bf03209695
|
[31] | Eckert R, Naitoh Y, Friedman K (1972) Sensory mechanisms in Paramecium. I. Two cmoponents of the electric response to mechanical stimulation of the anterior surface. J Exp Biol 56: 683–694.
|
[32] | Dunlap K (1977) Localization of Calcium Channels in Paramecium Caudatum. J Physiol 271: 119–133.
|
[33] | Gustin MC, Nelson DL (1987) Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium. Biochem J 246: 337–345.
|
[34] | Walters ET, Carew TJ, Kandel ER (1979) Classical conditioning in Aplysia californica. Proc Natl Acad Sci U S A 76: 6675–6679. doi: 10.1073/pnas.76.12.6675
|
[35] | Bergstr?m SR (1968) Induced Avoidance Behaviour in the Protozoa Tetrahymena. Scand J Psychol 9: 215–219. doi: 10.1111/j.1467-9450.1968.tb00536.x
|
[36] | Bergstr?m SR (1968) Acquisition of an avoidance reaction to light in the protozoa tetrahymena. Scand J Psychol 9: 220–224. doi: 10.1111/j.1467-9450.1968.tb00537.x
|
[37] | Nilsonne G, Appelgren A, Axelsson J, Fredrikson M, Lekander M (2011) Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro. Behav Brain Funct 7: 47. doi: 10.1186/1744-9081-7-47
|
[38] | Tagkopoulos I, Liu Y-C, Tavazoie S (2008) Predictive Behavior Within Microbial Genetic Networks. Science 320: 1313–1317. doi: 10.1126/science.1154456
|
[39] | Dale K, Collett TS (2001) Using artificial evolution and selection to model insect navigation. Curr Biol 11: 1305–1316. doi: 10.1016/s0960-9822(01)00418-3
|
[40] | Mitchell A, Romano GH, Groisman B, Dekel E, Kupiec M, et al. (2009) Adaptive prediction of environmental changes by microorganisms. Nature 460: 220–225. doi: 10.1038/nature08112
|
[41] | Harvey I (2011) The Microbial Genetic Algorithm. In: Kampis G, editor. ECAL 2009. Budapest, Hungary: Springer, Heidelberg. pp. 126–133.
|