All Title Author
Keywords Abstract


Digital Epidemiology

DOI: 10.1371/journal.pcbi.1002616

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mobile, social, real-time: the ongoing revolution in the way people communicate has given rise to a new kind of epidemiology. Digital data sources, when harnessed appropriately, can provide local and timely information about disease and health dynamics in populations around the world. The rapid, unprecedented increase in the availability of relevant data from various digital sources creates considerable technical and computational challenges.

References

[1]  Green MD, Freedman DM, Gordis L (2000) Reference guide on epidemiology. Reference manual on scientific evidence (Federal Judicial Center). Available: http://www.fjc.gov/public/pdf.nsf/lookup?/sciman06.pdf/file/sciman06.pdf.Accessed 29 June 2012.
[2]  Eysenbach G (2009) Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res 11: e11. doi: 10.2196/jmir.1157.
[3]  International Telecommunication Union (2011) Measuring the information society 2011. 157 p. Available: http://www.itu.int/net/pressoffice/backg?rounders/general/pdf/5.pdf.Accessed 29 June 2012.
[4]  Bengtsson L, Lu X, Thorson A, Garfield R, von Schreeb J (2011) Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Med 8: e1001083 doi:10.1371/journal.pmed.1001083.
[5]  Brownstein JS, Freifeld CC, Madoff LC (2009) Digital disease detection–harnessing the Web for public health surveillance. N Engl J Med 360: 2153–2155, 2157 doi:10.1056/NEJMp0900702.
[6]  Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, et al. (2009) Detecting influenza epidemics using search engine query data. Nature 457: 1012–1014 doi:10.1038/nature07634.
[7]  Signorini A, Segre AM, Polgreen PM (2011) The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS ONE 6: e19467 doi:10.1371/journal.pone.0019467.
[8]  Salathé M, Khandelwal S (2011) Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLoS Comput Biol 7: e1002199 doi:10.1371/journal.pcbi.1002199.
[9]  Brownstein JS, Freifeld CC, Reis BY, Mandl KD (2008) Surveillance sans frontieres: Internet-based emerging infectious disease intelligence and the HealthMap project. PLoS Med 5: e151 doi:10.1371/journal.pmed.0050151.
[10]  Heymann DL, Rodier GR (2001) WHO Operational Support Team to the Global Outbreak Alert and Response Network (2001) Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases. Lancet Infect Dis 1: 345–353 doi:10.1016/S1473-3099(01)00148-7.
[11]  Heymann DL, Rodier GR (2004) Global surveillance, national surveillance, and SARS. Emerging Infect Dis 10: 173–175. doi: 10.3201/eid1002.031038
[12]  Chan EH, Brewer TF, Madoff LC, Pollack MP, Sonricker AL, et al. (2010) Global capacity for emerging infectious disease detection. Proc Nat Acad Sci U S A 107: 21701–21706 doi:10.1073/pnas.1006219107.
[13]  Grove R, Hetzel A (1968) Vital statistics rates in the United States, 1940–1960. U.S. Department of Health, Education, and Welfare. Public Health Service. Public Health Service Publication No. 1677. Washington (D.C.): National Center for Health Statistics. 887 p.
[14]  Noble JV (1974) Geographic and temporal development of plagues. Nature 250: 726–729. doi: 10.1038/250726a0
[15]  Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc Nat Acad Sci U S A 101: 15124–15129 doi:10.1073/pnas.0308344101.
[16]  World Health Organization (2008) The global burden of disease: 2004 update. 146 p. Available: http://www.who.int/entity/healthinfo/glo?bal_burden_disease/GBD_report_2004update?_full.pdf.Accessed 29 June 2012.
[17]  Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291: 1238–1245 doi:10.1001/jama.291.10.1238.
[18]  Schuit AJ, van Loon AJM, Tijhuis M, Ocké M (2002) Clustering of lifestyle risk factors in a general adult population. Prev Med 35: 219–224. doi: 10.1006/pmed.2002.1064
[19]  GoldfrankLR, LivermanCT (2007) Preparing for an Influenza Pandemic: Personal Protective Equipment for Healthcare Workers. Washington (D.C.): The National Academies Press.
[20]  Brewer DD, Hagan H, Sullivan DG, Muth SQ, Hough ES, et al. (2006) Social structural and behavioral underpinnings of hyperendemic hepatitis C virus transmission in drug injectors. J Infect Dis 194: 764–772 doi:10.1086/505585.
[21]  Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453: 779–782 doi:10.1038/nature06958.
[22]  Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton J-F, et al. (2010) Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. PLoS ONE 5: e11596 doi:10.1371/journal.pone.0011596.
[23]  Pentland A, Pentland S (2008) Honest signals: how they shape our world. Cambridge (MA): MIT Press.
[24]  Mossong J, Hens N, Jit M, Beutels P, Auranen K, et al. (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5: e74 doi:10.1371/journal.pmed.0050074.
[25]  Lynch C, Roper C (2011) The transit phase of migration: circulation of malaria and its multidrug-resistant forms in Africa. PLoS Med 8: e1001040 doi:10.1371/journal.pmed.1001040.
[26]  Tatem AJ, Qiu Y, Smith DL, Sabot O, Ali AS, et al. (2009) The use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents. Malar J 8: 287 doi:10.1186/1475-2875-8-287.
[27]  Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, et al. (2010) A high-resolution human contact network for infectious disease transmission. Proc Nat Acad Sci U S A 107: 22020–22025 doi:10.1073/pnas.1009094108.
[28]  Stehlé J, Voirin N, Barrat A, Cattuto C, Colizza V, et al. (2011) Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 9: 87 doi:10.1186/1741-7015-9-87.
[29]  Balcan D, Hu H, Goncalves B, Bajardi P, Poletto C, et al. (2009) Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Med 7: 45 doi:10.1186/1741-7015-7-45.
[30]  Merler S, Ajelli M, Pugliese A, Ferguson NM (2011) Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling. PLoS Comput Biol 7: e1002205 doi:10.1371/journal.pcbi.1002205.
[31]  Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In Proceedings of Operating Systems Design and Implementation (OSDI). San Francisco, CA. pp 137–150.
[32]  Smith A, Brenner J (2012) Twitter use 2012. Pew Internet & American Life Project, May 31, 2012. Available: http://pewinternet.org/~/media/Files/Rep?orts/2012/PIP_Twitter_Use_2012.pdf.Accessed 29 June 2012.
[33]  Boyd D, Crawford K (2011) Six provocations for big data. A decade in internet time: symposium on the dynamics of the internet and society, September 2011. Available: http://ssrn.com/abstract=1926431 and doi:10.2139/ssrn.1926431. Accessed 29 June 2012.
[34]  Manovich L (2012) Trending: the promises and the challenges of big social data. In: Debates in the digital humanities. Gold MK, editor Minneapolis: University of Minnesota Press. 532 p.

Full-Text

comments powered by Disqus