All Title Author
Keywords Abstract

Exponential Decay Rate of the Perturbed Energy of the Wave Equation with Zero Order Term

DOI: 10.4236/apm.2011.15049, PP. 276-279

Keywords: Perturbed Energy, Compactness Uniqueness Argument

Full-Text   Cite this paper   Add to My Lib


In this paper, we consider the wave equation with zero order term. We use the compactness uniqueness argument and some result of I. Lasiecka and D. Tataru in [4] to prove, directly, the exponential decay rate of the perturbed energy.


[1]  S. Feng and X. Feng, “Nonlinear Internal Damping of Wave Equations with Variable Coefficients,” Acta Mathematica Sinica, Vol. 20, No. 6, 2004, pp. 1057-1072. doi:10.1007/s10114-004-0394-3
[2]  Y. Guo and P. F. Yao, “Stabilization of Euler-Bernoulli Plate Equation with Variable Coefficients by Nonlinear Boundary Feedback,” Journal of Mathematical Analysis and Applications, Vol. 317, No. 1, 2006, pp. 50-70. doi:10.1016/j.jmaa.2005.12.006
[3]  V. Komornick and E. Zuazua, “A Direct Method for Boundary Stabilization of the Wave Equation,” Journal de Mathématiques Pures et Appli-quées, Vol. 69, 1990, pp. 33-54.


comments powered by Disqus