All Title Author
Keywords Abstract


Affine Eikonal, Wavization and Wigner Function

DOI: 10.4236/jmp.2016.713156, PP. 1738-1748

Keywords: Affine Eikonal, Wavization of Gabor Function, Wigner Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim in this paper is to construct an affine transformation using the classical physics analogy between the fields of optics and mechanics. Since optics and mechanics both have symplectic structures, the concept of optics can be replaced by that of mechanics and vice versa. We list the four types of eikonal (generating functions). We also introduce a unitary operator for the affine transformation. Using the unitary operator, the kernel (propagator) is calculated and the wavization (quantization) of the Gabor function is discussed. The dynamic properties of the affine transformed Wigner function are also discussed.

References

[1]  Hecht, E. and Zajac, A. (1974) Optics. Addison-Wesley, Boston.
[2]  Mickelson, A.R. (1992) Physical Optics. Van Nostrand Reinhold, New York.
http://dx.doi.org/10.1007/978-1-4615-3530-0
[3]  Guillemin, V. and Sternberg, S. (1984) Symplectic Technique in Physics. Cambridge.
[4]  Moshinsky, M. and Quesne, C. (1971) Journal of Mathematical Physics, 12, 1772.
http://dx.doi.org/10.1063/1.1665805
[5]  Boon, M.H. and Seligman, T.H. (1973) Journal of Mathematical Physics, 14, 1224.
http://dx.doi.org/10.1063/1.1666470
[6]  Torre, A. (2005) Linear Ray and Wave Optics in Phase Space. Elsevier, Amsterdam.
[7]  Ozaktas, H.M., Zalevsky, Z. and Kutay, M.A. (2001) The Fractional Fourier Transformation. John Wiley & Sons, Hoboken.
[8]  Goldstein, H. (1950) Classical Mechanics. Addison-Wesley, Boston.
[9]  Ogura, A. (2009) Journal of Physics, B42, 145504.
http://dx.doi.org/10.1088/0953-4075/42/14/145504
[10]  Stoler, D. (1970) Physical Review D, 1, 3217.
http://dx.doi.org/10.1103/PhysRevD.1.3217
[11]  Abe, S. and Sheridan, J.T. (1994) Journal of Physics, A27, 4179.
http://dx.doi.org/10.1088/0305-4470/27/12/023
[12]  Cai, L.Z. (2000) Optics Communications 185, 271-276.
http://dx.doi.org/10.1016/S0030-4018(00)01005-1
[13]  Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integral. McGraw-Hill Inc., Boston.
[14]  Gabor, D. (1946) J. of the IEE, 93, 429.
[15]  Shiff, L.I. (1955) Quantum Mechanics. McGraw-Hill Inc., Boston.
[16]  Wigner, E.P. (1932) Physical Review, 40, 749.
http://dx.doi.org/10.1103/PhysRev.40.749
[17]  Kim, Y.S. and Wigner, E.P. (1990) American Journal of Physics, 58, 439.
http://dx.doi.org/10.1119/1.16475
[18]  Hillery, M., O’connell, R.F., Scully, M.O. and Wigner, E.P. (1984) Physics Reports, 106, 121-167.
http://dx.doi.org/10.1016/0370-1573(84)90160-1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal