The aim in this paper is to construct an affine transformation using the classical physics analogy between the fields of optics and mechanics. Since optics and mechanics both have symplectic structures, the concept of optics can be replaced by that of mechanics and vice versa. We list the four types of eikonal (generating functions). We also introduce a unitary operator for the affine transformation. Using the unitary operator, the kernel (propagator) is calculated and the wavization (quantization) of the Gabor function is discussed. The dynamic properties of the affine transformed Wigner function are also discussed.
References
[1]
Hecht, E. and Zajac, A. (1974) Optics. Addison-Wesley, Boston.
[2]
Mickelson, A.R. (1992) Physical Optics. Van Nostrand Reinhold, New York. http://dx.doi.org/10.1007/978-1-4615-3530-0
[3]
Guillemin, V. and Sternberg, S. (1984) Symplectic Technique in Physics. Cambridge.
[4]
Moshinsky, M. and Quesne, C. (1971) Journal of Mathematical Physics, 12, 1772. http://dx.doi.org/10.1063/1.1665805
[5]
Boon, M.H. and Seligman, T.H. (1973) Journal of Mathematical Physics, 14, 1224. http://dx.doi.org/10.1063/1.1666470
[6]
Torre, A. (2005) Linear Ray and Wave Optics in Phase Space. Elsevier, Amsterdam.
[7]
Ozaktas, H.M., Zalevsky, Z. and Kutay, M.A. (2001) The Fractional Fourier Transformation. John Wiley & Sons, Hoboken.
[8]
Goldstein, H. (1950) Classical Mechanics. Addison-Wesley, Boston.
[9]
Ogura, A. (2009) Journal of Physics, B42, 145504. http://dx.doi.org/10.1088/0953-4075/42/14/145504
[10]
Stoler, D. (1970) Physical Review D, 1, 3217. http://dx.doi.org/10.1103/PhysRevD.1.3217
[11]
Abe, S. and Sheridan, J.T. (1994) Journal of Physics, A27, 4179. http://dx.doi.org/10.1088/0305-4470/27/12/023