Gai Kun, Zhang Changshui. Learning Discriminative Piecewise Li near Models with Boundary Points / / Proc of the 24th AAAI Confer ence on Artificial Intelligence. Georgia, USA, 2010: 444-450
[2]
Cai Bingbing, Huang Tong, Zhuang Xinhua, et al. Piecewise Li near Classifiers Using Binary Tree Structure and Genetic Algorithm.Pattern Recognition, 1996, 29(11): 1905-1917
[3]
Kostin A. A Simple and Fast MultiClass Piecewise Linear Pattern Classifier. Pattern Recognition, 2006, 39(11): 1949-1962
[4]
Fukunage K. Introduction to Statistical Pattern Recognition. San Diego, USA: Academic Press, 1993
[5]
Li Yujian, Liu Bo, Yang Xinwu, et al. Multiconlitron: A General Piecewise Linear Classifier. IEEE Trans on Neural Networks,2011, 22(2): 276-289
[6]
Cortes C, Vapnik V. Support Vector Networks. Machine Learning,1995, 20(3): 273-297
[7]
Vapnik V. The Nature of Statistical Learning Theory. New York,USA: SpringerVerlag, 1995
[8]
Friess T T, Harrison R. Support Vector Neural Networks: The Ker nel Adatron with Bias and SoftMargin. Technical Report, ACSE TR725. Sheffield, UK: University of Sheffield, 1998
[9]
Keerthi S S, Shevade S K, Bhattacharyya C, et al. A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier De sign. IEEE Trans on Neural Networks, 2000, 11(1): 124-136
[10]
Franc V, Hlavac V. An Iterative Algorithm Learning the Maximal Margin Classifier. Pattern Recognition, 2003, 36 (9): 1985-1996
[11]
Hartigan J A, Wong M A. A KMeans Clustering Algorithm.Applied Statistics, 1979, 28(1): 100-108
[12]
Bagirov A M. MaxMin Separability. Optimization Methods and Software, 2005, 20(2/3): 277-296
[13]
Bagirov A M, Ugon J, Webb D. An Efficient Algorithm for the Incremental Construction of a Piecewise Linear Classifier. Informa tion Systems, 2011, 36(4): 782-790
[14]
Bagirov A M, Ugon J, Webb D, et al. Classification through Incremental MaxMin Separability. Pattern Analysis and Applica tions, 2011, 14(2): 165-174
[15]
Cover T M, Hart P E. Nearest Neighbor Pattern Classificatio
[16]
Webb D. Efficient Piecewise Linear Classifiers and Applications.Ph. D Dissertation. Ballarat, Australia: University of Ballarat,2010932 模式识别与人工智能摇摇摇26 卷
[17]
Mangasarian O L. Multisurface Method of Pattern Separation. IEEETrans on Information Theory, 1968, 14(6): 801-807
[18]
Herman G T, Yeung K T D. On PiecewiseLinear Classification.IEEE Trans on Pattern Analysis and Machine Intelligence, 1992,14(7): 782-786
[19]
Sklansky J, Michelotti L. Locally Trained Piecewise Linear Classi fiers. IEEE Trans on Pattern Analysis and Machine Intelligence,1980, 2(2): 101-111
[20]
Park Y, Sklansky J. Automated Design of MultipleClass Piecewise Linear Classifiers / / Proc of the 9th International Conference on Pa ttern Recognition. Rome, Italy, 1988, II: 1068-1071
[21]
Tenmoto H, Kudo M, Shimbo M. Piecewise Linear Classifiers with an Appropriate Number of Hyperplanes. Pattern Recognition, 1998,31(11): 1627-1634