All Title Author
Keywords Abstract

Maximal Syntactic Complexity of Regular Languages Implies Maximal Quotient Complexities of Atoms

Full-Text   Cite this paper   Add to My Lib


We relate two measures of complexity of regular languages. The first is syntactic complexity, that is, the cardinality of the syntactic semigroup of the language. That semigroup is isomorphic to the semigroup of transformations of states induced by non-empty words in the minimal deterministic finite automaton accepting the language. If the language has n left quotients (its minimal automaton has n states), then its syntactic complexity is at most n^n and this bound is tight. The second measure consists of the quotient (state) complexities of the atoms of the language, where atoms are non-empty intersections of complemented and uncomplemented quotients. A regular language has at most 2^n atoms and this bound is tight. The maximal quotient complexity of any atom with r complemented quotients is 2^n-1, if r=0 or r=n, and 1+\sum_{k=1}^{r} \sum_{h=k+1}^{k+n-r} \binom{h}{n} \binom{k}{h}, otherwise. We prove that if a language has maximal syntactic complexity, then it has 2^n atoms and each atom has maximal quotient complexity, but the converse is false.


comments powered by Disqus

Contact Us


微信:OALib Journal