
Mathematics 2015
Airy, Beltrami, Maxwell, Morera, Einstein and Lanczos potentials revisitedAbstract: The main purpose of this paper is to revisit the well known potentials, called stress functions, needed in order to study the parametrizations of the stress equations, respectively provided by G.B. Airy (1863) for 2dimensional elasticity, then by E. Beltrami (1892), J.C. Maxwell (1870) and G. Morera (1892) for 3dimensional elasticity, finally by A. Einstein (1915) for 4dimensional elasticity, both with a variational procedure introduced by C. Lanczos (1949,1962) in order to relate potentials to Lagrange multipliers. Using the methods of Algebraic Analysis, namely mixing differential geometry with homological algebra and combining the double duality test involved with the Spencer cohomology, we shall be able to extend these results to an arbitrary situation with an arbitrary dimension n. We shall also explain why double duality is perfectly adapted to variational calculus with differential constraints as a way to eliminate the corresponding Lagrange multipliers. For example, the canonical parametrization of the stress equations is just described by the formal adjoint of the n2(n2  1)/12 components of the linearized Riemann tensor considered as a linear second order differential operator but the minimum number of potentials needed in elasticity theory is equal to n(n  1)/2 for any minimal parametrization. Meanwhile, we can provide all the above results without even using indices for writing down explicit formulas in the way it is done in any textbook today. The example of relativistic continuum mechanics with n = 4 is provided in order to prove that it could be strictly impossible to obtain such results without using the above methods. We also revisit the possibility (Maxwell equations of electromag netism) or the impossibility (Einstein equations of gravitation) to obtain canonical or minimal parametrizations for various other equations of physics. It is nevertheless important to notice that, when n and the algorithms presented are known, most of the calculations can be achieved by using computers for the corresponding symbolic computations. Finally, though the paper is mathematically oriented as it aims providing new insights towards the mathematical foundations of elasticity theory and mathematical physics, it is written in a rather selfcontained way.
