All Title Author
Keywords Abstract

Physics  2013 

Single Colour Diagnostics of the Mass-to-light Ratio: Predictions from Galaxy Formation Models

DOI: 10.1093/mnras/stt192

Full-Text   Cite this paper   Add to My Lib

Abstract:

Accurate galaxy stellar masses are crucial to better understand the physical mechanisms driving the galaxy formation process. We use synthetic star formation and metal enrichment histories predicted by the {\sc galform} galaxy formation model to investigate the precision with which various colours $(m_{a}-m_{b})$ can alone be used as diagnostics of the stellar mass-to-light ratio. As an example, we find that, at $z=0$, the {\em intrinsic} (B$_{f435w}-$V$_{f606w}$) colour can be used to determine the intrinsic rest-frame $V$-band stellar mass-to-light ratio ($\log_{10}\Gamma_{V}=\log_{10}[(M/M_{\odot})/(L_{V}/L_{V\odot})]$) with a precision of $\sigma_{lg\Gamma}\simeq 0.06$ when the initial mass function and redshift are known beforehand. While the presence of dust, assuming a universal attenuation curve, can have a systematic effect on the inferred mass-to-light ratio using a single-colour relation, this is typically small as it is often possible to choose a colour for which the dust reddening vector is approximately aligned with the $(m_{a}-m_{b})-\log_{10}\Gamma_{V}$ relation. The precision with which the stellar mass-to-light ratio can be recovered using a single colour diagnostic rivals implementations of SED fitting using more information but in which simple parameterisations of the star formation and metal enrichment histories are assumed. To facilitate the wide use of these relations, we provide the optimal observer frame colour to estimate the stellar mass-to-light ratio, along with the associated parameters, as a function of redshift ($0

Full-Text

comments powered by Disqus