All Title Author
Keywords Abstract


Multicriteria Partial Cooperative Games

DOI: 10.4236/am.2015.612186, PP. 2125-2131

Keywords: Non Cooperative Games, TU-Games, Strong Nash Equilibrium, Pareto Equilibrium, Environmental Models

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we study an approach to environmental topics, through multicriteria partial cooperative games. In general, not all players wish to cooperate to solve a common problem, so we consider a model where only some decision-makers cooperate. Starting from the transformation of a coalition game into a strategic one, we give a new concept of solution for partial cooperative models proving an existence theorem.

References

[1]  Göran-Maler, K., Xepapadeas, A. and De Zeeuw, A. (2003) The Economics of Shallow Lakes. Environmental and Resource Economics, 26, 603-624.
[2]  Hardin, G. (1968) The Tragedy of Commons. Science, 162.
[3]  Axelrod, R. and Dion, D. (1988) The Further Evolution of Cooperation. Science, 1242, 1385-1390.
[4]  Ostrom, E. (1990) Governing the Commons. The Evolution of Institution for Collective Action. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511807763
[5]  Carraro, C. and Siniscalco, D. (1993) Strategies for the Protection of the Environment. Journal of Public Economic, 52, 309-328.
http://dx.doi.org/10.1016/0047-2727(93)90037-T
[6]  Finus, M. (2001) Game Theory and International Environmental Cooperation. Edward Elgar Ed.
[7]  Hanley, N., Shogren, J.F. and White, B. (1997) Environmental Economics in Theory and Practice. MacMillan, London.
[8]  Morgan, J. and Prieur, F. (2013) Global Emission Ceiling versus International Cap and Trade: What Is the Most Efficient System When Countries Act Non-Cooperatively? Environmental Modeling and Assessment.
http://dx.doi.org/10.1007/s10666-013-9361-7
[9]  Tidball, M. and Zaccour, G. (2005) An Environmental Game with Coupling Constraints. Environmental Modeling and Assessment, 10, 153-158.
[10]  Fläm, S.D. (2006) Balanced Environmental Games. Computers and Operations Research, 33, 401-408.
[11]  Aumann, R.J. and Dréze, J. (1974) Cooperative Games with Coalition Structures. International Journal of Game Theory, 3, 217-237.
http://dx.doi.org/10.1007/BF01766876
[12]  Borm, P.E.M. and Tijs, S.H. (1992) Strategic Claim Games Corresponding to an NTU-Game. Games and Economic Behavior, 4, 58-71.
http://dx.doi.org/10.1016/0899-8256(92)90005-D
[13]  Monderer, D. and Shapley, L.S. (1996) Potential Games. Games and Economic Behavior, 14, 124-143.
http://dx.doi.org/10.1006/game.1996.0044
[14]  Myerson, R. (1997) Game Theory. Analysis of Conflict. Harvard University Press.
[15]  Owen, G. (1977) Values of Games with a Priori Unions. In: Boehan, V. and Nachthanp, H., Eds., Mathematical Economics and Game Theory, Springer-Verlag, Berlin, 76-88.
http://dx.doi.org/10.1007/978-3-642-45494-3_7
[16]  Pusillo, L. and Tijs, S. (2012) E-Equilibria for Multicriteria Games. In: Cardaliaguet, P. and Cressman, R., Eds., Advances in Dynamic Games, Annals of the International Society of Dynamic Games, Vol. 12, Birkhäuser, Boston, 217- 228.
[17]  Patrone, F., Pusillo, L. and Tijs, S. (2007) Multicriteria Games and Potentials. TOP, 15, 138-145.
http://dx.doi.org/10.1007/s11750-007-0008-1
[18]  Pieri, G. and Pusillo, L. (2010) Interval Values for Multicriteria Cooperative Games. AUCO Czech Economic Review, 4, 144-155.
[19]  Puerto Albandoz, J. and Fernandez Garcia, F.R. (2006) Teoria de Juegos Multiobjetivo. Imagraf Impresores, Sevilla.
[20]  Shapley, L.S. (1959) Equilibrium Points in Games with Vector Payoffs. Naval Research Logistic Quarterly, 6, 57-61.
http://dx.doi.org/10.1002/nav.3800060107
[21]  Ayoshim, D.A. and Tanaka, T. (2000) On the Partial Cooperative Games. Non Linear Analysis and Convex Analysis, Rimskokyuroku, 1136, 9-12.
[22]  Mallozzi, L. and Tijs, S. (2008) Partial Cooperation and Non-Signatories Multiple Decision. AUCO Czech Economic Review, 2, 21-27.
[23]  Meca-Martínez, A., Sánchez Soriano, J., García-Jurado, I. and Tijs, S. (1998) Strong Equilibria in Claim Games Corresponding to Convex Games. International Journal of Game Theory, 27, 211-217.
http://dx.doi.org/10.1007/s001820050067

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal