All Title Author
Keywords Abstract

Marine Drugs  2013 

Structure of Fucoidan from Brown Seaweed Turbinaria ornata as Studied by Electrospray Ionization Mass Spectrometry (ESIMS) and Small Angle X-ray Scattering (SAXS) Techniques

DOI: 10.3390/md11072431

Keywords: fucoidan, Turbinaria ornata, structure, ESIMS, SAXS

Full-Text   Cite this paper   Add to My Lib


The purpose of this study is to elucidate both the chemical and conformational structure of an unfractionated fucoidan extracted from brown seaweed Turbinaria ornata collected at Nha-trang bay, Vietnam. Electrospray ionization mass spectrometry (ESI-MS) was used for determining the chemical structure and small angle X-ray scattering (SAXS) provided conformational of the structure at the molecular level. The results showed that the fucoidan has a sulfate content of 25.6% and is mainly composed of fucose and galactose residues (Fuc:Gal ≈ 3:1). ESIMS analysis suggested that the fucoidan has a backbone of 3-linked α-l-Fucp residues with branches, →4)-Galp(1→ at C-4 of the fucan chain. Sulfate groups are attached mostly at C-2 and sometimes at C-4 of both fucose and galactose residues. A molecular model of the fucoidan was built based on obtained chemical structure and scattering curves estimated from molecular model and observed SAXS measurement were fitted. The results indicated that fucoidan under study has a rod-like bulky chain conformation.


[1]  Li, B.; Lu, F.; Wei, F.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695, doi:10.3390/molecules13081671.
[2]  Chevolot, L.; Mulloy, B.; Ratiskol, J.; Foucault, A.; Colliec-Jouault, S. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr. Res. 2001, 330, 529–535, doi:10.1016/S0008-6215(00)00314-1.
[3]  Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552.
[4]  Kusaykin, M.; Bakunina, I.; Sova, V.; Ermakova, S.; Kuznetsova, T.; Besednova, N.; Zaporozhets, T.; Zvyagintseva, T. Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol. J. 2008, 3, 904–915.
[5]  Lee, J.B.; Hayashi, K.; Hashimoto, M.; Nakano, T.; Hayashi, T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem. Pharm. Bull. 2004, 52, 1091–1094, doi:10.1248/cpb.52.1091.
[6]  Trinchero, J.; Ponce, N.M.A.; Cordoba, O.L.; Flores, M.L.; Pampuro, S.; Stortz, C.A.; Salomon, H.; Turk, G. Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phytother. Res. 2009, 23, 707–712, doi:10.1002/ptr.2723.
[7]  Raghavendran, H.R.; Srinivasan, P.; Rekha, S. Immunomodulatory activity of fucoidan against aspirin-induced gastric mucosal damage in rats. Int. Immunopharmacol. 2011, 11, 157–163, doi:10.1016/j.intimp.2010.11.002.
[8]  Wang, J.; Zhang, Q.; Zhang, Z.; Song, H.; Li, P. Potential antioxidant and anticoagulant capacity oflow molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2010, 46, 6–12, doi:10.1016/j.ijbiomac.2009.10.015.
[9]  Synytsya, A.; Kim, W.J.; Kim, S.M.; Pohl, R.; Synytsya, A.; Kvasnicka, F.; Copíkova, J.; Park, J.I. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr. Polym. 2010, 81, 41–48, doi:10.1016/j.carbpol.2010.01.052.
[10]  Sait?, H.; Yoshioka, Y.; Yokoi, M.; Yamada, J. Distinct gelation mechanism between linear and branched (1→3)-β-d-glucans as revealed by high-resolution solid-state 13C NMR. Biopolymers 1990, 29, 1689–1698, doi:10.1002/bip.360291402.
[11]  Gao, Y.; Fukuda, A.; Katsuraya, K.; Kaneko, Y.; Mimura, T.; Nakashima, H.; Uryu, T. Synthesis of regioselective substituted curdlan sulfates with medium molecular weights and their specific anti-HIV-1 activities. Macromolecules 1997, 30, 3224–3228, doi:10.1021/ma961711d.
[12]  Daniel, R.; Chevolot, L.; Carrascal, M.; Tissot, B.; Mourao, P.A.S.; Abian, J. Electrospray ionization mass spectrometry of oligosaccharides derived from fucoidan of Ascophyllum nodosum. Carbohydr. Res. 2007, 342, 826–834, doi:10.1016/j.carres.2007.01.009.
[13]  Anastyuk, S.D.; Shevchenko, N.M.; Dmitrenok, P.S.; Zvyagintseva, T.N. ESIMS analysis of fucoidan preparations from Costaria costata, extracted from alga at different life-stages. Carbohydr. Polym. 2012, 90, 993–1002, doi:10.1016/j.carbpol.2012.06.033.
[14]  Anastyuk, S.D.; Shevchenko, N.M.; Dmitrenok, P.S.; Zvyagintseva, T.N. Anticancer activity in vitro of a fucoidan from the brown alga Fucus evanescens and its low-molecular fragments, structurally characterized by tandem mass-spectrometry. Carbohydr. Polym. 2012, 87, 186–194, doi:10.1016/j.carbpol.2011.07.036.
[15]  Glatter, O.; Kratky, O. Small Angle X-Ray Scattering; Academic Press: London, UK, 1982.
[16]  Grant, T.D.; Luft, J.R.; Wolfley, J.R.; Tsuruta, H.; Martel, A.; Montelione, G.T.; Snell, E.H. Small angle X-ray scattering as a complementary tool for high-throughput structural studies. Biopolymers 2011, 95, 517–530, doi:10.1002/bip.21630.
[17]  Chattopadhyay, N.; Ghosh, T.; Sinha, S.; Chattopadhyay, K.; Karmakar, P.; Ray, B. Polysaccharides from Turbinaria conoides: Structural features and antioxidant capacity. Food Chem. 2010, 118, 823–829, doi:10.1016/j.foodchem.2009.05.069.
[18]  Huynh, Q.N.; Nguyen, H.D. The Seaweed Resources of Vietnam. In Seaweed Resources of the World,1998; Critchley, A.T., Ohno, M., Eds.; Japan International Cooperation Agency: Yokosuka, Japan, 2006; pp. 62–69.
[19]  Tissot, B.; Salpin, J.Y.; Martinez, M.; Gaigeota, M.P.; Daniel, R. Differentiation of the fucoidan sulfated l-fucose isomers constituents by CE-ESIMS and molecular modeling. Carbohydr. Res. 2006, 341, 598–609, doi:10.1016/j.carres.2005.11.029.
[20]  Anastyuk, S.D.; Shevchenko, N.M.; Nazarenko, E.L.; Dmitrenok, P.S.; Zvyagintseva, T.N. Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry. Carbohydr. Res. 2009, 344, 779–787, doi:10.1016/j.carres.2009.01.023.
[21]  Marais, M.F.; Joseleau, J.P. A fucoidan fraction from Ascophyllum nodosum. Carbohydr. Res. 2001, 336, 155–159, doi:10.1016/S0008-6215(01)00257-9.
[22]  Anastyuk, S.D.; Shevchenko, N.M.; Nazarenko, E.L.; Imbs, T.I.; Gorbach, V.I.; Dmitrenok, P.S.; Zvyagintseva, T.N. Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry. Carbohydr. Res. 2010, 345, 2206–2212, doi:10.1016/j.carres.2010.07.043.
[23]  Saad, O.M.; Leary, J.A. Delineating mechanisms of dissociation for isomeric heparin disaccharides using isotope labeling and ion trap tandem massspectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1274–1286, doi:10.1016/j.jasms.2004.05.008.
[24]  Bilan, M.I.; Grachev, A.A.; Ustuzhamina, N.E.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohydr. Res. 2002, 337, 719–730, doi:10.1016/S0008-6215(02)00053-8.
[25]  Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334, doi:10.1016/0003-2697(62)90095-7.
[26]  Dodgson, K.S. Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem. J. 1961, 78, 312–319.
[27]  Shiroma, R.; KoniShi, T.; Uechi, S.; TaKo, M. Structural study of fucoidan from the brown seaweed Hizikia fusiformis. Food Sci. Technol. Res. 2008, 14, 176–182, doi:10.3136/fstr.14.176.


comments powered by Disqus