All Title Author
Keywords Abstract

PLOS ONE  2014 

Entangling Mobility and Interactions in Social Media

DOI: 10.1371/journal.pone.0092196

Full-Text   Cite this paper   Add to My Lib

Abstract:

Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someone’s location from their friends’ locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of the networks not captured by models uncoupling mobility and social interactions such as: i) the total size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by a simplified version of our model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.

References

[1]  Lazer D, Pentland A, Adamic L, Aral S, Barabasi AL, et al. (2009) Computational social science. Science 323: 721. doi: 10.1126/science.1167742
[2]  Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel. Nature 439: 462–5. doi: 10.1038/nature04292
[3]  González MC, Hidalgo CA, Barabási AL (2008) Understanding individual human mobility patterns. Nature 453: 779–82. doi: 10.1038/nature06958
[4]  Song C, Koren T, Wang P, Barabási AL (2010) Modelling the scaling properties of human mobility. Nature Physics 6: 818–823. doi: 10.1038/nphys1760
[5]  Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media? Proceedings of the 19th international conference on World Wide Web - WWW '10, p.591–600.
[6]  Mislove A, Koppula HS, Gummadi KP, Druschel P, Bhattacharjee B (2008) Growth of the ickr social network. Proceedings of the first workshop on Online Social Networks - WOSP ' 08: 25–30. doi: 10.1145/1397735.1397742
[7]  Miritello G, Moro E, Lara R, Martínez-López R, Belchamber J, et al. (2013) Time as a limited resource: Communication strategy in mobile phone networks. Social Networks 35: 89–95. doi: 10.1016/j.socnet.2013.01.003
[8]  Gon?alves B, Perra N, Vespignani A (2011) Modeling users’ activity on twitter networks: Validation of Dunbar’s number. PLoS ONE 6: e22656. doi: 10.1371/journal.pone.0022656
[9]  Bakshy E, Rosenn I, Marlow C, Adamic L (2012) The role of social networks in information diffusion. Proceedings of the 21st international conference on World Wide Web - WWW ′12, 519–528.
[10]  Ugander J, Backstrom L, Marlow C, Kleinberg J (2012) Structural diversity in social contagion. Proc Natl Acad Sci (USA) 109: 5962–5966. doi: 10.1073/pnas.1116502109
[11]  Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics of the news cycle. Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining - KDD ′09, p.497–506.
[12]  Lehmann J, Gon?alves B, Ramasco JJ, Cattuto C (2012) Dynamical classes of collective attention in Twitter. Proceedings of the 21st international conference on World Wide Web - WWW ′12. p.251–260.
[13]  Grabowicz PA, Ramasco JJ, Moro E, Pujol JM, Eguíluz VM (2012) Social features of online networks: the strength of intermediary ties in online social media. PLoS ONE 7: e29358. doi: 10.1371/journal.pone.0029358
[14]  Grabowicz PA, Aiello LM, Eguíluz VM, Jaimes A (2013) Distinguishing topical and social groups based on common identity and bond theory. Proceedings of the sixth ACM international conference on Web search and data mining - WSDM ′13, p.627–636.
[15]  Ferrara E (2012) A large-scale community structure analysis in Facebook. EPJ Data Science 1: 9. doi: 10.1140/epjds9
[16]  Borge-Holthoefer J, Rivero A, García I, Cauhé E, Ferrer A, et al. (2011) Structural and dynamical patterns on online social networks: The Spanish may 15th movement as a case study. PLoS ONE 6: e23883. doi: 10.1371/journal.pone.0023883
[17]  González-Bailón M, Borge-Holthoefer J, Rivero A, Moreno Y (2011) The dynamics of protest recruitment through an online network. Scientific Reports 1: 197. doi: 10.1038/srep00197
[18]  Conover MD, Davis C, Ferrara E, McKelvey K, Menczer F, et al. (2013) The geospatial character-istics of a social movement communication network. PLoS ONE 8: e55957. doi: 10.1371/journal.pone.0055957
[19]  Lambiotte R, Blondel V, Dekerchove C, Huens E, Prieur C, et al. (2008) Geographical dispersal of mobile communication networks. Physica A: Statistical Mechanics and its Applications 387: 5317–5325. doi: 10.1016/j.physa.2008.05.014
[20]  Krings G, Calabrese F, Ratti C, Blondel VD (2009) Urban gravity: A model for inter-city telecom-munication ows. Journal of Statistical Mechanics: Theory and Experiment 2009: L07003. doi: 10.1088/1742-5468/2009/07/l07003
[21]  Phithakkitnukoon S, Smoreda Z, Olivier P (2012) Socio-geography of human mobility: A study using longitudinal mobile phone data. PLoS ONE 7: e39253. doi: 10.1371/journal.pone.0039253
[22]  Liben-Nowell D, Novak J, Kumar R, Raghavan P, Tomkins A (2005) Geographic routing in social networks. Proc Natl Acad Sci (USA) 102: 11623–11628. doi: 10.1073/pnas.0503018102
[23]  Crandall DJ, Backstrom L, Cosley D, Suri S, Huttenlocher D, et al. (2010) Inferring social ties from geographic coincidences. Proc Natl Acad Sci (USA) 107: 22436–22441. doi: 10.1073/pnas.1006155107
[24]  González MC, Lind PG, Herrmann HJ (2006) System of mobile agents to model social networks. Phys Rev Lett 96: 088072. doi: 10.1103/physrevlett.96.088702
[25]  Backstrom L, Sun E, Marlow C (2010) Find me if you can: Improving geographical prediction with social and spatial proximity. Proceedings of the 19th international conference on World Wide Web - WWW ′10, p.61–70.
[26]  Scellato S, Noulas A, Lambiotte R, Mascolo C (2011) Socio-spatial properties of online location-based social networks. Proceedings of the 5th international AAAI conference on weblogs and social media - ICWSM′11, p.329–336.
[27]  Takhteyev Y, Gruzd A, Wellman B (2012) Geography of Twitter networks. Social Networks 34: 73–81. doi: 10.1016/j.socnet.2011.05.006
[28]  Lu X, Bengtsson L, Holme P (2012) Predictability of population displacement after the 2010 Haiti earthquake. Proc Natl Acad Sci (USA) 109: 11576–11581. doi: 10.1073/pnas.1203882109
[29]  Volkovich Y, Scellato S, Laniado D, Mascolo C, Kaltenbrunner A (2012) The length of bridge ties: Structural and geographic properties of online social interactions. Proceedings of the 6th international AAAI conference on weblogs and social media - ICWSM ′12, p.346–353.
[30]  Wang D, Pedreschi D, Song C, Giannotti F, Barabasi AL (2011) Human mobility, social ties, and link prediction. Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining - KDD ′11, p.1100–1108.
[31]  Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: User movement in location-based social networks. Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining - KDD ′11, p.1082–1090.
[32]  Sadilek A, Kautz H, Bigham JP (2012) Finding your friends and following them to where you are. Proceedings of the fifth ACM international conference on Web search and data mining - WSDM ′12, p.723–732.
[33]  Balcan D, Colizza V, Gon?alves B, Hu H, Ramasco JJ, et al. (2009) Multiscale mobility networks and the large scale spreading of infectious diseases. Proc Natl Acad Sci (USA) 106: 21484–21489. doi: 10.1073/pnas.0906910106
[34]  Wang P, González MC, Hidalgo CA, Barabási AL (2009) Understanding the spreading patterns of mobile phone viruses. Science 324: 1071–1076. doi: 10.1126/science.1167053
[35]  Brockmann D (2010) The physics of where to go. Nature Physics 6: 720. doi: 10.1038/nphys1792
[36]  Simini F, González MC, Maritan A, Barabási AL (2012) A universal model for mobility and migration patterns. Nature 484: 96–100. doi: 10.1038/nature10856
[37]  Jia T, Jiang B, Carling K, Bolin M, Ban Y (2012) An empirical study on human mobility and its agent-based modeling. Journal of Statistical Mechanics: Theory and Experiment 2012: P11024. doi: 10.1088/1742-5468/2012/11/p11024
[38]  Szell M, Sinatra R, Petri G, Thurner S, Latora V (2012) Understanding mobility in a social petri dish. Scientific Reports 2: 457. doi: 10.1038/srep00457
[39]  Hasan S, Schneider CM, Ukkusuri SV, González MC (2013) Spatiotemporal patterns of urban human mobility. Journal of Statistical Physics 151: 304–318. doi: 10.1007/s10955-012-0645-0
[40]  Giannotti F, Pappalardo L, Pedreschi D, Wang D (2013) Mobility data: Modeling, management, and understanding In: Renso C, Spaccapietra S, Zimańyi E, editors. Cambridge University Press.
[41]  Butts CT, Acton RM, Hipp JR, Nagle NN (2012) Geographical variability and network structure. Social Networks 34: 82–100. doi: 10.1016/j.socnet.2011.08.003
[42]  Twitter API, section for developers of Twitter Web page. Available: https://dev.twitter.com. Accessed 2014 Feb 6.
[43]  Ratkiewicz J, Conover M, Meiss M, Gon?alves B, Patil S, et al.. (2011) Truthy: Mapping the spread of astroturf in microblog streams. Proceedings of the 20th international conference companion on World Wide Web - WWW ′11, p.249–252.
[44]  Data available at the Stanford large network dataset collection. Available: http://snap. stanford.edu/data. Accessed 2014 Feb 6.
[45]  Ugander J, Karrer B, Backstrom L, Marlow C (2011) The anatomy of the Facebook social graph. arXiv:1111.4503.
[46]  State B, Weber I, Zagheni E (2013) Studying inter-national mobility through IP geolocation. Proceedings of the sixth ACM international conference on Web search and data mining - WSDM ′13, p.265–274.
[47]  Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Available: http://sedac.ciesin.columbia.edu/data/se?t/gpw-v3-population-count-future-estimat?es. Ac-cessed 2014 Feb 6.
[48]  Rivera MT, Soderstrom SB, Uzzi B (2010) Social networks: Assortative, relational, and proximity mechanisms. Annu Rev Sociol 36: 91–115. doi: 10.1146/annurev.soc.34.040507.134743

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal