All Title Author
Keywords Abstract

PLOS ONE  2013 

Inhibition of Vascular Smooth Muscle Cell Proliferation by Gentiana lutea Root Extracts

DOI: 10.1371/journal.pone.0061393

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

References

[1]  Waltenberger J (1997) Modulation of growth factor action: implications for the treatment ofcardiovascular diseases. Circulation 96: 4083–4094.
[2]  Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22: 1276–1312 22/10/1276 [pii];10.1101/gad.1653708 [doi].
[3]  Claesson-Welsh L (1994) Platelet-derived growth factor receptor signals. J Biol Chem 269: 32023–32026.
[4]  Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45: 287–306 10.1080/1040869059096 [doi].
[5]  Brahmachari G, Mondal S, Gangopadhyay A, Gorai D, Mukhopadhyay B, et al. (2004) Swertia (Gentianaceae): chemical and pharmacological aspects. Chem Biodivers 1: 1627–1651 10.1002/cbdv.200490123 [doi].
[6]  Nadinica EGSRABCDSAUC (1999) Topical anti-inflammatory activity of Gentianella achalensis. 70: 166–171.
[7]  Jankovic T, Savikin K, Menkovic N, Aljancic I, Leskovac A, et al. (2008) Radioprotective effects of Gentianella austriaca fractions and polyphenolic constituents in human lymphocytes. Planta Med 74: 736–740 10.1055/s-2008-1074524 [doi].
[8]  Leskovac A, Joksic G, Jankovic T, Savikin K, Menkovic N (2007) Radioprotective properties of the phytochemically characterized extracts of Crataegus monogyna, Cornus mas and Gentianella austriaca on human lymphocytes in vitro. Planta Med 73: 1169–1175 10.1055/s-2007-981586 [doi].
[9]  Menkovic N, Juranic Z, Stanojkovic T, Raonic-Stevanovic T, Savikin K, et al. (2010) Radioprotective activity of Gentiana lutea extract and mangiferin. Phytother Res 24: 1693–1696 10.1002/ptr.3225 [doi].
[10]  Aberham A, Schwaiger S, Stuppner H, Ganzera M (2007) Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS. J Pharm Biomed Anal 45: 437–442 S0731–7085(07)00391-3 [pii];10.1016/j.jpba.2007.07.001 [doi].
[11]  Toriumi Y, Kakuda R, Kikuchi M, Yaoita Y, Kikuchi M (2003) New triterpenoids from Gentiana lutea. Chem Pharm Bull (Tokyo) 51: 89–91.
[12]  Schmieder A, Schwaiger S, Csordas A, Backovic A, Messner B, et al. (2007) Isogentisin–a novel compound for the prevention of smoking-caused endothelial injury. Atherosclerosis 194: 317–325 S0021–9150(06)00650-2 [pii];10.1016/j.atherosclerosis.2006.10.?019[doi].
[13]  Rojas A, Bah M, Rojas JI, Gutierrez DM (2000) Smooth muscle relaxing activity of gentiopicroside isolated from Gentiana spathacea. Planta Med 66: 765–767 10.1055/s-2000-9774 [doi].
[14]  Akileshwari C, Muthenna P, Nastasijevic B, Joksic G, Petrash JM, et al. (2012) Inhibition of aldose reductase by Gentiana lutea extracts. Exp Diabetes Res 2012: 147965 10.1155/2012/147965 [doi].
[15]  Nastasijevic B, Lazarevic-Pasti T, Dimitrijevic-Brankovic S, Pasti I, Vujacic A, et al. (2012) Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts. J Pharm Biomed Anal 66: 191–196 S0731–7085(12)00191–4 [pii];10.1016/j.jpba.2012.03.052 [doi].
[16]  Brown C, Pan X, Hassid A (1999) Nitric oxide and C-type atrial natriuretic peptide stimulate primary aortic smooth muscle cell migration via a cGMP-dependent mechanism: relationship to microfilament dissociation and altered cell morphology. Circ Res 84: 655–667.
[17]  Nickel T, Deutschmann A, Hanssen H, Summo C, Wilbert-Lampen U (2009) Modification of endothelial biology by acute and chronic stress hormones. Microvasc Res 78: 364–369 S0026–2862(09)00220–9 [pii];10.1016/j.mvr.2009.07.008 [doi].
[18]  Ahmed SA, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods 170: 211–224.
[19]  Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, et al. (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30: 2785–2791 10.1002/jcc.21256 [doi].
[20]  Fischmann TO, Smith CK, Mayhood TW, Myers JE, Reichert P, et al. (2009) Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry 48: 2661–2674 10.1021/bi801898e [doi];10.1021/bi801898e [pii].
[21]  Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, et al. (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399: 601–605 10.1038/21224 [doi].
[22]  Jiang B, Brecher P, Cohen RA (2001) Persistent activation of nuclear factor-kappaB by interleukin-1beta and subsequent inducible NO synthase expression requires extracellular signal-regulated kinase. Arterioscler Thromb Vasc Biol 21: 1915–1920.
[23]  Shaul YD, Gibor G, Plotnikov A, Seger R (2009) Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade. Genes Dev 23: 1779–1790 23/15/1779 [pii];10.1101/gad.523909 [doi].
[24]  Wortzel I, Seger R (2011) The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer 2: 195–209 10.1177/1947601911407328 [doi];10.1177_1947601911407328 [pii].
[25]  Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81: 317S–325S. 81/1/317S [pii].
[26]  Myllarniemi M, Frosen J, Calderon Ramirez LG, Buchdunger E, Lemstrom K, et al. (1999) Selective tyrosine kinase inhibitor for the platelet-derived growth factor receptor in vitro inhibits smooth muscle cell proliferation after reinjury of arterial intima in vivo. Cardiovasc Drugs Ther 13: 159–168.
[27]  Sanchez I, Dynlacht BD (2005) New insights into cyclins, CDKs, and cell cycle control. Semin Cell Dev Biol 16: 311–321 S1084–9521(05)00031–5 [pii];10.1016/j.semcdb.2005.02.007 [doi].
[28]  Golias CH, Charalabopoulos A, Charalabopoulos K (2004) Cell proliferation and cell cycle control: a mini review. Int J Clin Pract 58: 1134–1141.
[29]  Akiyama T, Ohuchi T, Sumida S, Matsumoto K, Toyoshima K (1992) Phosphorylation of the retinoblastoma protein by cdk2. Proc Natl Acad Sci U S A 89: 7900–7904.
[30]  Guo J, Sheng G, Warner BW (2005) Epidermal growth factor-induced rapid retinoblastoma phosphorylation at Ser780 and Ser795 is mediated by ERK1/2 in small intestine epithelial cells. J Biol Chem 280: 35992–35998 M504583200 [pii];10.1074/jbc.M504583200 [doi].
[31]  Dumesic PA, Scholl FA, Barragan DI, Khavari PA (2009) Erk1/2 MAP kinases are required for epidermal G2/M progression. J Cell Biol 185: 409–422 jcb.200804038 [pii];10.1083/jcb.200804038 [doi].
[32]  Choi BM, Pae HO, Jang SI, Kim YM, Chung HT (2002) Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol 35: 116–126.
[33]  Villalobo A (2006) Nitric oxide and cell proliferation. FEBS J 273: 2329–2344 EJB5250 [pii];10.1111/j.1742–4658.2006.05250.x [doi].
[34]  Calmels S, Hainaut P, Ohshima H (1997) Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res 57: 3365–3369.
[35]  Jiang ZL, Fletcher NM, Diamond MP, Abu-Soud HM, Saed GM (2009) S-nitrosylation of caspase-3 is the mechanism by which adhesion fibroblasts manifest lower apoptosis. Wound Repair Regen 17: 224–229 WRR459 [pii];10.1111/j.1524–475X.2009.00459.x [doi].
[36]  Maejima Y, Adachi S, Morikawa K, Ito H, Isobe M (2005) Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. J Mol Cell Cardiol 38: 163–174 S0022-2828(04)00315-3 [pii];10.1016/j.yjmcc.2004.10.012 [doi].
[37]  Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17: 7–23.
[38]  Papapetropoulos A, Rudic RD, Sessa WC (1999) Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc Res 43: 509–520. S0008–6363(99)00161–3 [pii].
[39]  Hu Y, Dietrich H, Metzler B, Wick G, Xu Q (2000) Hyperexpression and activation of extracellular signal-regulated kinases (ERK1/2) in atherosclerotic lesions of cholesterol-fed rabbits. Arterioscler Thromb Vasc Biol 20: 18–26.
[40]  Di PN, Di TP, Di SS, Giardinelli A, Pipino C, et al. (2013) Increased iNOS activity in vascular smooth muscle cells from diabetic rats: Potential role of Ca(2+)/calmodulin-dependent protein kinase II delta 2 (CaMKIIdelta(2)). Atherosclerosis 226: 88–94 S0021–9150(12)00748–4 [pii];10.1016/j.atherosclerosis.2012.10.?062[doi].
[41]  Miyoshi T, Li Y, Shih DM, Wang X, Laubach VE, et al. (2006) Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice. Life Sci 79: 525–531 S0024–3205(06)00098–1 [pii];10.1016/j.lfs.2006.01.043 [doi].
[42]  Chyu KY, Dimayuga P, Zhu J, Nilsson J, Kaul S, et al. (1999) Decreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice. Circ Res 85: 1192–1198.
[43]  Chyu KY, Dimayuga PC, Zhao X, Nilsson J, Shah PK, et al. (2004) Altered AP-1/Ref-1 redox pathway and reduced proliferative response in iNOS-deficient vascular smooth muscle cells. Vasc Med 9: 177–183.
[44]  Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, et al. (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11: 1192–1197 nsmb859 [pii];10.1038/nsmb859 [doi].
[45]  Chang WC, Yu YM, Chiang SY, Tseng CY (2008) Ellagic acid suppresses oxidised low-density lipoprotein-induced aortic smooth muscle cell proliferation: studies on the activation of extracellular signal-regulated kinase 1/2 and proliferating cell nuclear antigen expression. Br J Nutr 99: 709–714 S0007114507831734 [pii];10.1017/S0007114507831734 [doi].
[46]  Chen S, Ding Y, Tao W, Zhang W, Liang T, et al. (2012) Naringenin inhibits TNF-alpha induced VSMC proliferation and migration via induction of HO-1. Food Chem Toxicol 50: 3025–3031 S0278–6915(12)00420–6 [pii];10.1016/j.fct.2012.06.006 [doi].
[47]  Lang Y, Chen D, Li D, Zhu M, Xu T, et al. (2012) Luteolin inhibited hydrogen peroxide-induced vascular smooth muscle cells proliferation and migration by suppressing the Src and Akt signalling pathways. J Pharm Pharmacol 64: 597–603 10.1111/j.2042–7158.2011.01438.x [doi].
[48]  Lo HM, Tsai YJ, Du WY, Tsou CJ, Wu WB (2012) A naturally occurring carotenoid, lutein, reduces PDGF and H(2)O(2) signaling and compromised migration in cultured vascular smooth muscle cells. J Biomed Sci 19: 18 1423–0127–19–18 [pii];10.1186/1423–0127–19–18 [doi].
[49]  Kreuzer J, Viedt C, Brandes RP, Seeger F, Rosenkranz AS, et al. (2003) Platelet-derived growth factor activates production of reactive oxygen species by NAD(P)H oxidase in smooth muscle cells through Gi1,2. FASEB J 17: 38–40 10.1096/fj.01–1036fje [doi];01–1036fje [pii].
[50]  Kappert K, Sparwel J, Sandin A, Seiler A, Siebolts U, et al. (2006) Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis. Arterioscler Thromb Vasc Biol 26: 2644–2651 01.ATV.0000246777.30819.85 [pii];10.1161/01.ATV.0000246777.30819.85 [doi].
[51]  Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66: 105–143 S1043–6618(12)00097–7 [pii];10.1016/j.phrs.2012.04.005 [doi].
[52]  Yang JL, Liu LL, Shi YP (2010) Phytochemicals and biological activities of Gentiana species. Nat Prod Commun 5: 649–664.
[53]  Wu QX, Li Y, Shi YP (2006) Antioxidant phenolic glucosides from Gentiana piasezkii. J Asian Nat Prod Res 8: 391–396 W301786611Q72362 [pii];10.1080/10286020500172368 [doi].
[54]  Myagmar BE, Aniya Y (2000) Free radical scavenging action of medicinal herbs from Mongolia. Phytomedicine 7: 221–229.
[55]  Hudecova A, Kusznierewicz B, Hasplova K, Huk A, Magdolenova Z, et al.. (2012) Gentiana asclepiadea exerts antioxidant activity and enhances DNA repair of hydrogen peroxide- and silver nanoparticles-induced DNA damage. Food Chem Toxicol. S0278–6915(12)00431–0 [pii];10.1016/j.fct.2012.06.017 [doi].
[56]  Cao D, Li H, Yi J, Zhang J, Che H, et al. (2011) Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS One 6: e21071 10.1371/journal.pone.0021071 [doi];PONE-D-11-03702 [pii].
[57]  Baba SP, Barski OA, Ahmed Y, O'Toole TE, Conklin DJ, et al. (2009) Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes 58: 2486–2497 db09–0375 [pii];10.2337/db09–0375 [doi].
[58]  Srivastava S, Vladykovskaya E, Barski OA, Spite M, Kaiserova K, et al. (2009) Aldose reductase protects against early atherosclerotic lesion formation in apolipoprotein E-null mice. Circ Res 105: 793–802 CIRCRESAHA.109.200568 [pii];10.1161/CIRCRESAHA.109.200568 [doi].
[59]  Dan Q, Wong R, Chung SK, Chung SS, Lam KS (2004) Interaction between the polyol pathway and non-enzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion. Life Sci 76: 445–459 S0024–3205(04)00839–2 [pii];10.1016/j.lfs.2004.09.010 [doi].
[60]  Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Aggarwal BB, et al. (2002) Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J Biol Chem 277: 32063–32070 10.1074/jbc.M202126200 [doi];M202126200 [pii].
[61]  Tammali R, Saxena A, Srivastava SK, Ramana KV (2010) Aldose reductase regulates vascular smooth muscle cell proliferation by modulating G1/S phase transition of cell cycle. Endocrinology 151: 2140–2150 en.2010–0160 [pii];10.1210/en.2010–0160 [doi].
[62]  Matsukawa K, Ogata M, Hikage T, Minami H, Shimotai Y, et al.. (2006) Antiproliferative activity of root extract from gentian plant (Gentiana triflora) on cultured and implanted tumor cells. Biosci Biotechnol Biochem 70: 1046–1048. JST.JSTAGE/bbb/70.1046 [pii].
[63]  Sezik E, Aslan M, Yesilada E, Ito S (2005) Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 76: 1223–1238 S0024–3205(04)00949-X [pii];10.1016/j.lfs.2004.07.024 [doi].
[64]  Nastasijevic B, Lazarevic-Pasti T, Dimitrijevic-Brankovic S, Pasti I, Vujacic A, et al. (2012) Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts. J Pharm Biomed Anal 66: 191–196 S0731–7085(12)00191–4 [pii];10.1016/j.jpba.2012.03.052 [doi].
[65]  Schindhelm RK, van der Zwan LP, Teerlink T, Scheffer PG (2009) Myeloperoxidase: a useful biomarker for cardiovascular disease risk stratification? Clin Chem 55: 1462–1470 clinchem.2009.126029 [pii];10.1373/clinchem.2009.126029 [doi].

Full-Text

comments powered by Disqus