全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Conservation of Gravitational Energy Momentum and Renormalizable Quantum Theory of Gravitation

DOI: 10.4236/jmp.2013.48A013, PP. 133-152

Keywords: Path Integral Quantization, Gauge Theory, Volume-Preserving Diffeomorphisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

Viewing gravitational energy-momentum as equal by observation, but different in essence from inertial energymomentum \"\" naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner Minkowski space \"\" which can describe gravitation at the classical level. This theory is quantized in the path integral formalism starting with a non-covariant Hamiltonian formulation with unconstrained canonical field variables and a manifestly positive Hamiltonian. The relevant path integral measure and weight are then brought into a Lorentz- and gauge-covariant form allowing to express correlation functions—applying the De Witt-Faddeev-Popov approach—in any meaningful gauge. Next the Feynman rules are developed and the quantum effective action at one loop in a background field approach is renormalized which results in an asymptotically free theory without presence of other fields and in a theory without asymptotic freedom including the Standard Model (SM) fields. Finally the BRST apparatus is developed as preparation for the renormalizability proof to all orders and a sketch of this proof is given.

References

[1]  C. Wiesendanger, “I—Conservation of Gravitational Energy Momentum and Inner Diffeomorphism Group Gauge Invariance,” arXiv:1102.5486 [math-ph].
[2]  C. Wiesendanger, Physical Review D, Vol. 80, 2009, Article ID: 025018. doi:10.1103/PhysRevD.80.025018
[3]  C. Wiesendanger, Physical Review D, Vol. 80, 2009, Article ID: 025019. doi:10.1103/PhysRevD.80.025019
[4]  C. Wiesendanger, “II—Conservation of Gravitational Energy Momentum and Poincaré-Covariant Classical Theory of Gravitation,” arXiv:1103.0349 [math-ph].
[5]  S. Weinberg, “The Quantum Theory of Fields I,” Cambridge University Press, Cambridge, 1995. doi:10.1017/CBO9781139644167
[6]  S. Weinberg, “The Quantum Theory of Fields II,” Cambridge University Press, Cambridge, 1996. doi:10.1017/CBO9781139644174
[7]  C. Wiesendanger, Classical and Quantum Gravity, Vol. 30, 2013, Article ID: 075024. doi:10.1088/0264-9381/30/7/075024
[8]  J. Zinn-Justin, “Quantum Field Theory and Critical Phenomena,” Oxford University Press, Oxford, 1993.
[9]  C. Rovelli, “Quantum Gravity,” Cambridge University Press, Cambridge, 2004.
[10]  C. Kiefer, “Quantum Gravity,” Oxford University Press, Oxford, 2007. doi:10.1093/acprof:oso/9780199212521.001.0001
[11]  C. Itzykson and J.-B. Zuber, “Quantum Field Theory,” McGraw-Hill, Singapore City, 1985.
[12]  L. O’Raifeartaigh, “Group Structure of Gauge Theories,” Cambridge University Press, Cambridge, 1986.
[13]  S. Pokorski, “Gauge Field Theories,” Cambridge University Press, Cambridge, 1987.
[14]  T.-P. Cheng and L.-F. Li, “Gauge Theory of Elementary Particle Physics,” Oxford University Press, Oxford, 1984.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133