All Title Author
Keywords Abstract

PG-2, a Potent AMP against Pathogenic Microbial Strains, from Potato (Solanum tuberosum L cv. Gogu Valley) Tubers Not Cytotoxic against Human Cells

DOI: 10.3390/ijms14024349

Keywords: peptide-G2, RP-HPLC, N-terminal sequence, human pathogenic, antimicrobial agent

Full-Text   Cite this paper   Add to My Lib


In an earlier study, we isolated potamin-1 (PT-1), a 5.6-kDa trypsin-chymotrypsin protease inhibitor, from the tubers of a potato strain ( Solanum tuberosum L cv. Gogu Valley). We established that PT-1 strongly inhibits pathogenic microbial strains, but not human bacterial strains, and that its sequence shows 62% homology with a serine protease inhibitor. In the present study, we isolated an antifungal and antibacterial peptide with no cytotoxicity from tubers of the same potato strain. The peptide (peptide-G2, PG-2) was isolated using salt-extraction, ultrafiltration and reverse-phase high performance liquid chromatography (RP-HPLC). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) showed the protein to have a molecular mass of 3228.5 Da, while automated Edman degradation showed the N-terminal sequence of PG-2 to be LVKDNPLDISPKQVQALCTDLVIRCMCCC-. PG-2 exhibited antimicrobial activity against Candida albicans, a human pathogenic yeast strain, and Clavibacter michiganensis subsp. michiganensis, a plant late blight strain. PG-2 also showed antibacterial activity against Staphylococcus aureus, but did not lyse human red blood cells and was thermostable. Overall, these results suggest PG-2 may be a good candidate to serve as a natural antimicrobial agent, agricultural pesticide and/or food additive.


[1]  Osborn, W.F.; Broekaert, F.R.; Terras, B.P.; Cammue, R.W. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol 1995, 108, 1353–1358.
[2]  Hultmark, H.G.; Boman, D. Cell-free immunity in insects. Annu. Rev. Microbiol 1987, 41, 103–126.
[3]  Hoffmann, J.A. Innate immunity of insects. Curr. Opin. Immunol 1995, 7, 4–10.
[4]  Park, J.-K.; Lee, R.; Gopal, C.H.; Seo, H.; Cheong, Y. Isolation and Purification of a Novel Deca-Antifungal Peptide from Potato (Solanum tuberosum L cv. Jopung) Against Candida albicans. Int. J. Mol. Sci 2012, 13, 4021–4032.
[5]  Simmaco, D.; Barra, M. Amphibian skin: A promising resource for antimicrbial peptides. Trends Biotechnol 1995, 13, 205–209.
[6]  Ganz, R.I.; Lehrer, A.K.; Lichtenstein, T. Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol 1993, 1, 105–128.
[7]  Sitaram, C.; Subbalakshmi, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett 1998, 16, 91–96.
[8]  Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis. Curr. Opin. Plant Biol 1999, 2, 280–286.
[9]  Hahm, J.-Y.; Kim, S.Y.; Lee, S.-C.; Park, S.Y.; Shin, S.J.; Choi, Y.; Park, K.-S. Purification and antimicrobial activity studies of the N-terminal fragment of ubiquitin from human amniotic fluid. Biochim. Biophys. Acta 2007, 1774, 1221–1226.
[10]  Garcia-Olmedo, A.; Segura, M.; Moreno, F.; Madueno, A.; Molina, F. Snakin-1, a peptide from potato that is active against plant pathogens. Mol. Plant Microb Interact 1999, 12, 16–23.
[11]  Molina, M.; Berrocal-Lobo, A.; Segura, M.; Moreno, G.; Lopez, F.; Garcia-Olmedo, A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 2002, 128, 951–961.
[12]  Park, M.H.; Kim, S.C.; Park, J.Y.; Kim, S.Y.; Lee, H.T.; Lim, H.; Cheong, K.S.; Hahm, Y. Purification and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety “Golden Valley”. Biochem. Biophys. Res. Commun 2006, 346, 681–686.
[13]  Hahm, J.Y.; Kim, S.C.; Park, M.H.; Kim, H.T.; Lim, Y.; Park, K.S. Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Biochem. Biophys. Res. Commun 2005, 330, 921–927.
[14]  Van Strien, L.C.; van Loon, E.A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol 1999, 55, 85–97.
[15]  Garg, V.R.; Tripathi, S.; Kumar, S.K. A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L.) syn Senna tora (L.) Roxb. seed extract. BMC Complement Altern. Med 2011, 11, 56.
[16]  Tian, S.B.; Liu, X.C.; Wang, M.J.; Shi, Y.Y.; Chen, Z.H.; Hu, W.M. Vegetative storage protein with trypsin inhibitor activity occurs in Sapindus mukorassi, a sapindaceae deciduous tree. J. Integr. Plant Biol 2009, 51, 352–359.
[17]  Sano, Y.K.; Yap, Y.; Kodama, F.; Waller, K.M.; Chung, H.; Ueda, K.; Nakamura, M.; Oldsen, H.; Yoda, Y.; Yamaguchi, H. Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. Plant Physiol 2005, 139, 127–137.
[18]  Wu, M.; Heinrich, I.T.; Baldwin, J. Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. J. Exp. Bot 2011, 62, 4355–4365.
[19]  Domoney, A.; Clemente, M.; Carmen Marín-Manzano, E.; Jiménez, M.; Carmen Arques, C. The anti-proliferative effect of TI1B, a major Bowman-Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. Br. J. Nutr 2012, 108, 135–144.
[20]  Park, J.Y.; Kim, S.C.; Park, J.K.; Lee, S.J.; Choi, K.S.; Hahm, Y. Novel antibacterial activity of β(2)-microglobulin in human amniotic fluid. PLoS One 2012, 7, e47642.
[21]  Ozols, J. Amino acid analysis. Murray, P.D., Ed.; Academic Press: London, UK, 1990; pp. 587–601.
[22]  Park, S.C.; Park, J.Y.; Kim, J.K.; Lee, I.; Hwang, H.; Cheong, J.W.; Nah, K.S.; Hahm, Y. Antifungal mechanism of a novel antifungal protein from pumpkin rinds against various fungal pathogens. J. Agric. Food Chem 2009, 57, 9299–9304.
[23]  Park, S.; Yoo, J.Y.; Kim, S.C.; Park, Y.; do Choi, C.H.; Seo, K.S.; Hahm, Y. Effect of acidic pH on antibacterial action of peptide isolated from Korean pen shell (Atrina pectinata). J. Pept. Sci 2011, 17, 353–357.
[24]  Park, S.C.; Park, J.Y.; Kim, C.; Jeong, S.; Yoo, K.S.; Hahm, Y. A plausible mode of action of pseudin-2, an antimicrobial peptide from Pseudis paradoxa. Biochim. Biophys. Acta 2011, 1808, 171–182.


comments powered by Disqus