Two cardinal manifestations of viral immunity are efficient clearance of acute infection and the capacity to vaccinate against secondary viral exposure. For noroviruses, the contributions of T cells to viral clearance and vaccination have not been elucidated. We report here that both CD4 and CD8 T cells are required for efficient clearance of primary murine norovirus (MNV) infection from the intestine and intestinal lymph nodes. Further, long-lasting protective immunity was generated by oral live virus vaccination. Systemic vaccination with the MNV capsid protein also effectively protected against mucosal challenge, while vaccination with the capsid protein of the distantly related human Lordsdale virus provided partial protection. Fully effective vaccination required a broad immune response including CD4 T cells, CD8 T cells, and B cells, but the importance of specific immune cell types varied between the intestine and intestinal lymph nodes. Perforin, but not interferon gamma, was required for clearance of MNV infection by adoptively transferred T lymphocytes from vaccinated hosts. These studies prove the feasibility of both mucosal and systemic vaccination against mucosal norovirus infection, demonstrate tissue specificity of norovirus immune cells, and indicate that efficient vaccination strategies should induce potent CD4 and CD8 T cell responses.
References
[1]
Estes MK, Prasad BV, Atmar RL (2006) Noroviruses everywhere: Has something changed? Curr Opin Infect Dis 19: 467–474.
[2]
Fankhauser RL, Noel JS, Monroe SS, Ando T, Glass RI (1998) Molecular epidemiology of “Norwalk-like viruses” in outbreaks of gastroenteritis in the United States. J Infect Dis 178: 1571–1578.
[3]
Fankhauser RL, Monroe SS, Noel JS, Humphrey CD, Bresee JS, et al. (2002) Epidemiologic and molecular trends of “Norwalk-like viruses” associated with outbreaks of gastroenteritis in the United States. J Infect Dis 186: 1–7.
[4]
Green KY, Chanock RM, Kapikian AZ (2001) Human Caliciviruses. In: Knipe DM, Howley PM, editors. Fields Virology. Philadelphia: Lippincott Williams & Wilkins. pp. 841–874.
[5]
Centers for Disease Control and Prevention (CDC) (2007) Norovirus activity—United States, 2006–2007. MMWR Morb Mortal Wkly Rep 56: 842–846.
[6]
Marin MS, Martin Alonso JM, Perez Ordoyo Garcia LI, Boga JA, Arguello-Villares JL, et al. (1995) Immunogenic properties of rabbit haemorrhagic disease virus structural protein VP60 expressed by a recombinant baculovirus: An efficient vaccine. Virus Res 39: 119–128.
[7]
Souza M, Costantini V, Azevedo MS, Saif LJ (2007) A human norovirus-like particle vaccine adjuvanted with ISCOM or mLT induces cytokine and antibody responses and protection to the homologous GII.4 human norovirus in a gnotobiotic pig disease model. Vaccine 25: 8448–8459.
[8]
Radford AD, Coyne KP, Dawson S, Porter CJ, Gaskell RM (2007) Feline calicivirus. Vet Res 38: 319–335.
[9]
Thackray LB, Wobus CE, Chachu KA, Liu B, Alegre ER, et al. (2007) Murine Noroviruses Comprising a Single Genogroup Exhibit Biological Diversity despite Limited Sequence Divergence. J Virol 81: 10460–10473.
[10]
Dolin R, Blacklow NR, DuPont H, Buscho RF, Wyatt RG, et al. (1972) Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis. Proc Soc Exp Biol Med 140: 578–583.
[11]
Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR (1977) Clinical immunity in acute gastroenteritis caused by Norwalk agent. N Engl J Med 297: 86–89.
[12]
Wyatt RG, Dolin R, Blacklow NR, DuPont HL, Buscho RF, et al. (1974) Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J Infect Dis 129: 709–714.
[13]
Johnson PC, Mathewson JJ, DuPont HL, Greenberg HB (1990) Multiple-challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J Infect Dis 161: 18–21.
[14]
Okhuysen PC, Jiang X, Ye L, Johnson PC, Estes MK (1995) Viral shedding and fecal IgA response after Norwalk virus infection. J Infect Dis 171: 566–569.
[15]
Lew JF, Valdesuso J, Vesikari T, Kapikian AZ, Jiang X, et al. (1994) Detection of Norwalk virus or Norwalk-like virus infections in Finnish infants and young children. J Infect Dis 169: 1364–1367.
Ryder RW, Singh N, Reeves WC, Kapikian AZ, Greenberg HB, et al. (1985) Evidence of immunity induced by naturally acquired rotavirus and Norwalk virus infection on two remote Panamanian islands. J Infect Dis 151: 99–105.
[18]
Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, et al. (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9: 548–553.
[19]
Hutson AM, Atmar RL, Graham DY, Estes MK (2002) Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185: 1335–1337.
[20]
Jiang X, Wang M, Graham DY, Estes MK (1992) Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66: 6527–6532.
[21]
Dingle KE, Lambden PR, Caul EO, Clarke IN (1995) Human enteric Caliciviridae: The complete genome sequence and expression of virus-like particles from a genetic group II small round structured virus. J Gen Virol 76 (Part 9): 2349–2355.
[22]
Green KY, Kapikian AZ, Valdesuso J, Sosnovtsev S, Treanor JJ, et al. (1997) Expression and self-assembly of recombinant capsid protein from the antigenically distinct Hawaii human calicivirus. J Clin Microbiol 35: 1909–1914.
[23]
Leite JP, Ando T, Noel JS, Jiang B, Humphrey CD, et al. (1996) Characterization of Toronto virus capsid protein expressed in baculovirus. Arch Virol 141: 865–875.
[24]
Lindesmith L, Moe C, LePendu J, Frelinger JA, Treanor J, et al. (2005) Cellular and humoral immunity following Snow Mountain virus challenge. J Virol 79: 2900–2909.
[25]
Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Estes MK (2003) Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin Immunol 108: 241–247.
[26]
Souza M, Cheetham SM, Azevedo MS, Costantini V, Saif LJ (2007) Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). J Virol 81: 9183–9192.
[27]
Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW (2003) STAT1-dependent innate immunity to a Norwalk-like virus. Science 299: 1575–1578.
[28]
Wobus CE, Karst SM, Thackray LB, Chang KO, Sosnovtsev SV, et al. (2004) Replication of a Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biology 2: e432. doi:10.1371/journal.pbio.0020432.
[29]
Sosnovtsev SV, Belliot G, Chang KO, Prikhodko VG, Thackray LB, et al. (2006) Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 80: 7816–7831.
[30]
Katpally U, Wobus CE, Dryden K, Virgin HW, Smith TJ (2007) The Structure of Antibody Neutralized Murine Norovirus and Unexpected Differences to Virus Like Particles. J Virol 82: 2079–2088.
[31]
Mumphrey SM, Changotra H, Moore TN, Heimann-Nichols ER, Wobus CE, et al. (2007) Murine Norovirus 1 Infection Is Associated with Histopathological Changes in Immunocompetent Hosts, but Clinical Disease Is Prevented by STAT1-Dependent Interferon Responses. J Virol 81: 3251–3263.
[32]
Gallimore CI, Lewis D, Taylor C, Cant A, Gennery A, et al. (2004) Chronic excretion of a norovirus in a child with cartilage hair hypoplasia (CHH). Journal of Clinical Virology 30: 196–204.
[33]
Kaufman SS, Chatterjee TK, Fuschino TE, Morse DL, Morotti RA, et al. (2005) Characteristics of human calicivirus enteritis in intestinal transplant recipients. Journal of Pediatric Gastroenterology and Nutrition 40: 328–333.
[34]
Mattner F, Sohr D, Heim A, Gastmeier P, Vennema H, et al. (2006) Risk groups for clinical complications of norovirus infections: An outbreak investigation. Clin Microbiol Infect 12: 69–74.
[35]
Nilsson M, Hedlund KO, Thorhagen M, Larson G, Johansen K, et al. (2003) Evolution of human calicivirus RNA in vivo: Accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype. J Virol 77: 13117–13124.
[36]
Simon A, Schildgen O, Maria Eis-Hubinger A, Hasan C, Bode U, et al. (2006) Norovirus outbreak in a pediatric oncology unit. Scand J Gastroenterol 41: 693–699.
[37]
Cheetham S, Souza M, Meulia T, Grimes S, Han MG, et al. (2006) Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol 80: 10372–10381.
[38]
Souza M, Azevedo MS, Jung K, Cheetham S, Saif LJ (2007) Pathogenesis and immune responses in gnotobiotic calves after infection with human norovirus (HuNoV) genogroup II.4-HS66 strain. J Virol 82: 1777–1786.
[39]
Chachu KA, Strong DW, LoBue AD, Wobus CE, Baric RS, et al. (2008) Antibody is critical for the clearance of murine norovirus infection. J Virol 82: 6610–6617.
[40]
Sosnovtsev SV, Garfield M, Green KY (2002) Processing map and essential cleavage sites of the nonstructural polyprotein encoded by ORF1 of the feline calicivirus genome. J Virol 76: 7060–7072.
[41]
Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, et al. (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: Expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virol 239: 389–401.
[42]
Deming D, Sheahan T, Heise M, Yount B, Davis N, et al. (2006) Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 3: e525. doi:10.1371/journal.pmed.0030525.
[43]
Lybarger L, Wang X, Harris MR, Virgin HW, Hansen TH (2003) Virus subversion of the MHC class I peptide-loading complex. Immunity 18: 121–130.
[44]
Koller BH, Marrack P, Kappler JW, Smithies O (1990) Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science 248: 1227–1230.
[45]
Grusby MJ, Johnson RS, Papaioannou VE, Glimcher LH (1991) Depletion of CD4 T cells in major histocompatibility complex class II-deficient mice. Science 253: 1417–1420.
[46]
Kitamura D, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350: 423–426.
[47]
Hoffmann JC, Peters K, Henschke S, Herrmann B, Pfister K, et al. (2001) Role of T lymphocytes in rat 2,4,6-trinitrobenzene sulphonic acid (TNBS) induced colitis: Increased mortality after gammadelta T cell depletion and no effect of alphabeta T cell depletion. Gut 48: 489–495.
[48]
Newell KA, He G, Hart J, Thistlethwaite JR Jr (1997) Treatment with either anti-CD4 or anti-CD8 monoclonal antibodies blocks alphabeta T cell-mediated rejection of intestinal allografts in mice. Transplantation 64: 959–965.
[49]
Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6: 940–952.
[50]
Thompson JM, Whitmore AC, Konopka JL, Collier ML, Richmond EM, et al. (2006) Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc Natl Acad Sci U S A 103: 3722–3727.
[51]
Lindesmith LC, Donaldson EF, LoBue AD, Cannon JL, Zheng DP, et al. (2008) Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med 5: e31. doi:10.1371/journal.pmed.0050031.
[52]
Murata T, Katsushima N, Mizuta K, Muraki Y, Hongo S, et al. (2007) Prolonged norovirus shedding in infants
[53]
Rockx B, de Wit M, Vennema H, Vinje J, De Bruin E, et al. (2002) Natural history of human calicivirus infection: A prospective cohort study. Clin Infect Dis 35: 246–253.
[54]
Graham DY, Jiang X, Tanaka T, Opekun AR, Madore HP, et al. (1994) Norwalk virus infection of volunteers: New insights based on improved assays. J Infect Dis 170: 34–43.
[55]
Atmar RL, Opekun AR, Gilger MA, Estes MK, Crawford SE, et al. (2008) Norwalk virus shedding after experimental human infection. Emerg Infect Dis 14: 1553–1557.
[56]
LoBue AD, Lindesmith L, Yount B, Harrington PR, Thompson JM, et al. (2006) Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine 24: 5220–5234.
[57]
Franco MA, Angel J, Greenberg HB (2006) Immunity and correlates of protection for rotavirus vaccines. Vaccine 24: 2718–2731.
[58]
Hsu CC, Riley LK, Wills HM, Livingston RS (2006) Persistent infection with and serologic cross-reactivity of three novel murine noroviruses. Comp Med 56: 247–251.
[59]
Ward JM, Wobus CE, Thackray LB, Erexson CR, Faucette LJ, et al. (2006) Pathology of immunodeficient mice with naturally occurring murine norovirus infection. Toxicol Pathol 34: 708–715.
[60]
Harrington PR, Yount B, Johnston RE, Davis N, Moe C, et al. (2002) Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles. J Virol 76: 730–742.
[61]
Cobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H (1984) Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312: 548–551.
[62]
Smith SC, Allen PM (1991) Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol 147: 2141–2147.
[63]
Radka SF, Machamer C, Cresswell P, Kostyu DD, Ward FE, et al. (1983) SFR3-DR5, a monoclonal antibody with HLA-DR5 specificity. J Immunol 130: 1863–1866.
[64]
McClellan JS, Tibbetts SA, Gangappa S, Brett KA, Virgin HW (2004) Critical role of CD4 T cells in an antibody-independent mechanism of vaccination against gamma-herpesvirus latency. J Virol 78: 6836–6845.
[65]
Coligan JE, Bierer B, Margulies DH, Shevach EM, Strober W, et al. (2007) Current Protocols in Immunology. John Wiley and Sons, Inc.