All Title Author
Keywords Abstract

PLOS ONE  2006 

The Dark Side of EGFP: Defective Polyubiquitination

DOI: 10.1371/journal.pone.0000054

Full-Text   Cite this paper   Add to My Lib

Abstract:

Enhanced Green Fluorescent Protein (EGFP) is the most commonly used live cell reporter despite a number of conflicting reports that it can affect cell physiology. Thus far, the precise mechanism of GFP-associated defects remained unclear. Here we demonstrate that EGFP and EGFP fusion proteins inhibit polyubiquitination, a posttranslational modification that controls a wide variety of cellular processes, like activation of kinase signalling or protein degradation by the proteasome. As a consequence, the NF-κB and JNK signalling pathways are less responsive to activation, and the stability of the p53 tumour suppressor is enhanced in cell lines and in vivo. In view of the emerging role of polyubiquitination in the regulation of numerous cellular processes, the use of EGFP as a live cell reporter should be carefully considered.

References

[1]  Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260: 712–717.
[2]  Zhang F, Hackett NR, Lam G, Cheng J, Pergolizzi R, et al. (2003) Green fluorescent protein selectively induces HSP70-mediated up-regulation of COX-2 expression in endothelial cells. Blood 102: 2115–2121.
[3]  Agbulut O, Coirault C, Niederlander N, Huet A, Vicart P, et al. (2006) GFP expression in muscle cells impairs actin-myosin interactions: implications for cell therapy. Nat Methods 3: 331.
[4]  Huang WY, Aramburu J, Douglas PS, Izumo S (2000) Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 6: 482–483.
[5]  Krestel HE, Mihaljevic AL, Hoffman DA, Schneider A (2004) Neuronal co-expression of EGFP and beta-galactosidase in mice causes neuropathology and premature death. Neurobiol Dis 17: 310–318.
[6]  Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, et al. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576–1583.
[7]  Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.
[8]  Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299–303.
[9]  Deng L, Wang C, Spencer E, Yang LY, Braun A, et al. (2000) Activation of the I kappa B kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351–361.
[10]  Zhou HL, Du MQ, Dixit VM (2005) Constitutive NF-kappa B activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 7: 425–431.
[11]  Uren GA, O'Rourke K, Aravind L, Pisabarro TM, Seshagiri S, et al. (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6: 961–967.
[12]  Ruland J, Duncan GS, Wakeham A, Mak TW (2003) Differential Requirement for Malt1 in T and B Cell Antigen Receptor Signaling. Immunity 19: 749–758.
[13]  Ruefli-Brasse AA, French DM, Dixit VM (2003) Regulation of NF-kappa B-dependent lymphocyte activation and development by paracaspase. Science 302: 1581–1584.
[14]  Sun LJ, Deng L, Ea CK, Xia ZP, Chen ZJJ (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14: 289–301.
[15]  Baens M, Fevery S, Sagaert X, Noels H, Hagens S, et al. (2006) Selective Expansion of Marginal Zone B-Cells in Eμ-API2-MALT1 Mice is Linked to Enhanced IκB kinase γ Polyubiquitination. Cancer Res 66: 5270–5277.
[16]  Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, et al. (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418: 443–447.
[17]  Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, et al. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273: 1392–1395.
[18]  Dixit R, Cyr R (2003) Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J 36: 280–290.
[19]  Ran R, Lu A, Zhang L, Tang Y, Zhu H, et al. (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKK{gamma} and impairing NF-{kappa}B survival signaling. Genes Dev 18: 1466–1481.
[20]  Chen H, Wu Y, Zhang Y, Jin L, Luo L, et al. (2006) Hsp70 inhibits lipopolysaccharide-induced NF-[kappa]B activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Letters 580: 3145–3152.
[21]  Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, et al. (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424: 801–805.
[22]  Habelhah H, Takahashi S, Cho SG, Kadoya T, Watanabe T, et al. (2004) Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J 23: 322–332.
[23]  Hu SM, Yang XL (2003) Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem 278: 10055–10060.
[24]  Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M, Nagy A (1998) Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech Dev 76: 79–90.
[25]  Fei P, Bernhard EJ, El-Deiry WS (2002) Tissue-specific induction of p53 targets in vivo. Cancer Res 62: 7316–7327.
[26]  Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18: 2195–2224.
[27]  Kudryashova E, Kudryashov D, Kramerova I, Spencer MJ (2005) Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J Mol Biol 354: 413–424.
[28]  Leung TK, Rajendran MY, Monfries C, Hall C, Lim L (1990) The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B′) and isolation of its cDNA and genomic DNA. Biochem J 267: 125–132.

Full-Text

comments powered by Disqus