全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Embryonic Development in Light of Controlled Chaos Dynamics and Quantum Electrodynamics

DOI: 10.4236/oalib.1111264, PP. 1-25

Subject Areas: Biophysics, Bioengineering

Keywords: Controlled Chaos Dynamics, Attractors, Super-Coherent State of Biological Water, Gene Regulatory Network, Symmetry Breaking

Full-Text   Cite this paper   Add to My Lib

Abstract

Biological systems are necessarily dissipative structures in the long run, and dissipative structures are far from equilibrium and homeostasis: order (periodicity) and disorder (non-linear variability) are “coexisting dynamic states”. The common epistemological habit of modern molecular biology is to reduce an observed phenotype or function to a molecular entity, such as a gene, protein or pathway, which have become the embodiment of causation in biology. In the emerging framework of gene network architecture the attractor nature of distinct cell phenotypes, explains a series of cell behaviors that are not easily accounted for by linear molecular pathways. It explains why cell-type specific genome-wide expression profiles, defined by the values of thousands of variables, are so reliably established during differentiation as if orchestrated by an invisible hand: the self-organizing and self-stabilizing property of biologically significant gene expression profiles is a natural feature conferred by attractors. In the human placental mammal, the embryonic cell cycle and intrauterine development process rests on one of the most effective dynamics to regulate the living, sometimes approaching and sometimes diverging chaos, i.e. a controlled chaos dynamics. Biological system’s development, namely each stage of the embryo development, is characterized by the presence of one-to-many attractors, toward which the developmental dynamic variables trajectories are rapidly approaching from all the points of its phase space. Symmetry propagation and symmetry breaking are essential processes in biological morphogenesis, in metazoan evolution and development. Within embryogenesis, the amniotic fluid (AF) should be treated as biological water in a super-coherent state and may act as an inherently dynamical entity endowed by a proper non-linear dynamics, that creates a biochemistry not governed by random collisions between molecules, but by a code of mutual recognition and recall among molecules based on long-distance electromagnetic interaction. For convenience, a GLOSSARY of terms extrapolated from the body of the text can be consulted at the end of the article.

Cite this paper

Messori, C. (2024). Embryonic Development in Light of Controlled Chaos Dynamics and Quantum Electrodynamics. Open Access Library Journal, 11, e1264. doi: http://dx.doi.org/10.4236/oalib.1111264.

References

[1]  Cugini, P. (2007) Caosbiologia: Razionale e metodologia per studiare il disordine, la complessità e la singolarità dei fenomeni bio-medici mediante analisi matematica non-lineare. Clinica Terapeutica, 158, e13-e20.
http://pietrocugini.seu-roma.it/Pietro_Cugini_Pubblicazioni_EPUB/Pietro%20Cugini%20Clin%20Ter%202007/Caosbiologia%20Clin%20Ter%20fasc.%205_2007.pdf
[2]  Beloussov, L.V. (2015) Morphomechanics of Development. Springer International Publishing, Cham.
https://www.researchgate.net/publication/284756219_Self-organization_of_biological_morphogenesis_General_approaches_and_topo-geometrical_models
[3]  Ball, P. (2001) The Self-Made Tapestry. Pattern Formation in Nature. Oxford University Press, Oxford.
[4]  Presnov, E.V. and Agur, Z. (2005) The Role Of Time Delays, Slow Processes and Chaos in Modulating the Cell-Cycle Clock. Mathematical Biosciences and Engineering, 2, 625-642. https://www.aimspress.com/article/10.3934/mbe.2005.2.625
https://doi.org/10.3934/mbe.2005.2.625
[5]  Messori, C. (2020) Mind-Brain-Body System’s Dynamics. Open Access Library Journal, 7, 1-49. https://doi.org/10.4236/oalib.1106720
https://doi.org/10.4236/oalib.1106720
[6]  Magatti, M., et al. (2018) The Immunomodulatory Properties of Amniotic Cells: The Two Sides of the Coin. Cell Transplantation, 27, 31-44.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434482/
https://doi.org/10.1177/0963689717742819
[7]  Tong, X. (2013) Amniotic Fluid May Act as a Transporting Pathway for Signaling Molecules and Stem Cells during the Embryonic Development of Amniotes. Journal of the Chinese Medical Association, 76, 606-610.
https://www.sciencedirect.com/science/article/pii/S1726490113001743
https://doi.org/10.1016/j.jcma.2013.07.006
[8]  Jang, Y., Kim, E., Shim, W., et al. (2015) Amniotic Fluid Exerts a Neurotrophic Influence on Fetal Neurodevelopment via the ERK/GSK-3 Pathway. Biological Research, 48, Article No. 44.
https://biolres.biomedcentral.com/track/pdf/10.1186/s40659-015-0029-4
https://doi.org/10.1186/s40659-015-0029-4
[9]  Jessen, K.R. (2004) Cells in Focus, Glial Cells. The International Journal of Biochemistry & Cell Biology, 36, 1861-1867.
https://doi.org/10.1016/j.biocel.2004.02.023
[10]  Oberheim, N.A., Goldman, S.A. and Nedergaard, M. (2012) Heterogeneity of Astrocytic Form and Function. Methods in Molecular Biology, 814, 23-45.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506190/
https://doi.org/10.1007/978-1-61779-452-0_3
[11]  Oberheim, N.A., et al. (2009) Uniquely Hominid Features of Adult Human Astrocytes. The Journal of Neuroscience, 29, 3276-3287.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819812/
https://doi.org/10.1523/JNEUROSCI.4707-08.2009
[12]  Robertson, J.M. (2013) Astrocytes and the Evolution of the Human Brain. Medical Hypoteses, 82, 236-239.
https://www.researchgate.net/publication/259586299_Astrocytes_and_the_evolution_of_the_human_brain
https://doi.org/10.1016/j.mehy.2013.12.004
[13]  Efimov, A., et al. (2007) Asymmetric CLASP-Dependent Nucleation of Noncentrosomal Microtubules at the Trans-Golgi Network. Developmental Cell, 12, 917-930.
http://www.cell.com/developmental-cell/abstract/S1534-5807(07)00149-9
https://doi.org/10.1016/j.devcel.2007.04.002
[14]  Hameroff, S. and Penrose, R. (2014) Consciousness in the Universe: A Review of the ‘Orch OR’ Theory. Physics of Life Reviews, 11, 39-78.
https://www.sciencedirect.com/science/article/pii/S1571064513001188?via%3Dihub#se0010
[15]  Barkovich, A.J. and Gressens, E. (1992) Formation, Maturation, and Disorders of Brain Neocortex. American Journal of Neuroradiology, 13, 423-446.
http://www.ajnr.org/content/13/2/423.full.pdf
[16]  Bjornsson, C.S., et al. (2015) It Takes a Village: Constructing the Neurogenic Niche. Development Cell Review, 32, 435-446.
http://www.cell.com/developmental-cell/pdf/S1534-5807(15)00033-7.pdf
https://doi.org/10.1016/j.devcel.2015.01.010
[17]  Ming, G.L. and Song, H.J. (2011) Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron, 70, 207-225.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3106107/
[18]  Morshead, C.M., et al. (1994) Neural Stem Cells in the Adult Mammalian Forebrain: A Relatively Quiescent Subpopulation of Subependymal Cells. Neuron, 13, 1071-1082. https://doi.org/10.1016/0896-6273(94)90046-9
https://doi.org/10.1016/0896-6273(94)90046-9
[19]  Reynolds, B.A. and Weiss, S. (1996) Clonal and Population Analyses Demonstrate That an EGF-Responsive Mammalian Embryonic CNS Precursor Is a Stem Cell. Developmental Biology, 175, 1-13.
https://pubmed.ncbi.nlm.nih.gov/8608856/
[20]  Doetsch, F., Garcia-Verdugo, J.M. and Alvarez-Buylla, A. (1999) Regeneration of a Germinal Layer in the Adult Mammalian Brain. Proceedings of the National Academy of Sciences of the United States of America, 96, 11619-11624.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18083/
https://doi.org/10.1073/pnas.96.20.11619
[21]  Oberheim, N.A., Wang, X.H., Goldman, S. and Nedergaard, M. (2006) Astrocytic Complexity Distinguishes the Human Brain. Trends in Neurosciences, 29, 547-553.
https://doi.org/10.1016/j.tins.2006.08.004
[22]  Fiorelli, R., Azim, K., Fischer, B. and Raineteau, O. (2015) Adding a Spatial Dimension to Postnatal Ventricular-Subventricular Zone Neurogenesis. Development, 142, 2109-2120. http://dev.biologists.org/content/142/12/2109
https://doi.org/10.1242/dev.119966
[23]  Farhadifar, R., et al. (2007) The In?uence of Cell Mechanics, Cell-Cell Interactions and Proliferation on Epithelial Packing. Current Biology, 17, 2095-2104.
https://doi.org/10.1016/j.cub.2007.11.049
[24]  Gurwitsch, A.G. (1944) A Theory of Biological Field. Sovetskaya Nauka, Moskva.
[25]  Mahlberg, A. (1987) Evidence of Collective Memory: A Test of Sheldrake’s Theory. Journal of Analytical Psychology, 32, 23-34.
https://doi.org/10.1111/j.1465-5922.1987.00023.x
[26]  Sheldrake, R. (1992) An Experimental Test of the Hypothesis of Formative Causation. Rivista di Biologia-Biology Forum, 86, 431-443.
https://www.sheldrake.org/research/morphic-resonance/an-experimental-test-of-the-hypothesis-of-formative-causation
[27]  Sheldrake, R. (2009) Morphic Resonance: The Nature of Formative Causation. Park Street Press, Vermont.
[28]  Fels, D., Cifra, M. and Scholkmann, F. (2015) Fields of the Cell, Research Signpost, India.
https://www.researchgate.net/profile/Felix_Scholkmann/publication/282653253_Fields_of_the_cell/links/561618a908ae4ce3cc6588a1/Fields-of-the-cell.pdf
[29]  Rouleau, N. and Dotta, B.T. (2014) Electromagnetic Fields as Structure-Function Zeitgebers in Biological Systems: Environmental Orchestration of Morphogenesis and Consciousness. Frontiers in Integrative Neurosciences, 8, Article 99705.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224074/
https://doi.org/10.3389/fnint.2014.00084
[30]  Levin, M. (2012) Morphogenetic Fields in Embryogenesis, Regeneration, and Cancer: Non-Local Control of Complex Patterning. Biosystems, 109, 243–261.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413735/
https://doi.org/10.1016/j.biosystems.2012.04.005
[31]  Savelyev, I. and Myakishev-Rempel, M. (2020) Evidence for DNA Resonance Signaling via Longitudinal Hydrogen Bonds. Progress in Biophysics and Molecular Biology, 156, 14-19.
https://www.researchgate.net/publication/343172563_Evidence_for_DNA_resonance_signaling_via_longitudinal_hydrogen_bonds
https://doi.org/10.1016/j.pbiomolbio.2020.07.005
[32]  Volodyaev, I. and Beloussov, L.V. (2015) Revisiting the Mitogenetic Effect of Ultra-Weak Photon Emission. Frontiers in Physiology, 6, Article 241.
https://www.researchgate.net/publication/282645567_Revisiting_the_Mitogenetic_effect_of_ultra-weak_photon_emission
https://doi.org/10.3389/fphys.2015.00241
[33]  Messori, C. (2019) The Super-Coherent State of Biological Water. Open Access Library Journal, 6, 1-17.
https://www.oalib.com/articles/5304030
[34]  Messori, C. (2019) Deep into the Water: Exploring the Hydro-Electromagnetic and Quantum-Electrodynamic Properties of Interfacial Water in Living Systems. Open Access Library Journal, 6, 1-61.
https://www.oalib.com/articles/5367871
https://doi.org/10.4236/oalib.1105435
[35]  Mavromatos, N.E., Mershin, A. and Nanopoulos, D.V. (2002) QED-Cavity Model of Microtubules Implies Dissipationless Energy Transfer and Biological Quantum Teleportation. International Journal of Modern Physics B, 16, 3623-3642.
https://arxiv.org/pdf/quant-ph/0204021.pdf
https://doi.org/10.1142/S0217979202011512
[36]  Montagnier, L., et al. (2011) DNA Waves and Water. Journal of Physics: Conference Series, 306, Article ID: 012007.
https://iopscience.ioorg/article/10.1088/1742-6596/306/1/012007/pdf
https://doi.org/10.1088/1742-6596/306/1/012007
[37]  Zhadin, M.N., et al. (1998) Combined Action of Static and Alternating Magnetic Fields on Ionic Current in Aqueous Glutamic Acid Solution. BioElectroMagnetics, 19, 41-45.
https://doi.org/10.1002/(sici)1521-186x(1998)19:1%3C41::aid-bem4%3E3.0.co;2-4
https://doi.org/10.1002/(SICI)1521-186X(1998)19:1<41::AID-BEM4>3.0.CO;2-4
[38]  Zhadin, M. and Giuliani, L. (2006) Some Problems in Modern Bioelectromagnetics. Electromagnetic Biology and Medicine, 25, 227-243.
https://doi.org/10.1080/15368370601066195
[39]  Del Giudice, E., et al. (2002) On the “Unreasonable” Effects of ELF Magnetic Field upon a System of Ions. BioElectroMagnetics, 23, 522-530.
https://doi.org/10.1002/bem.10046
[40]  Del Giudice, E. and Giuliani, L. (2010) Coherence in Water and the kT Problem in Living Matter. In: Giuliani, L. and Soffritti, M., Eds., Non-Thermal Effects and Mechanisms of Interaction between Electromagnetic Fields and Electromagnetic Fields and Matter, European Journal of Oncology, Vol. 5, 7-23.
http://www.teslabel.be/PDF/ICEMS_Monograph_2010.pdf
[41]  Bizzarri, M., et al. (2019) Field-Dependent Effects in Biological Systems, Organisms. Journal of Biological Sciences, 3, 35-42.
https://emmind.net/openpapers_repos/Endogenous_Fields-Mind/General/EM_Various/2019_Field-dependent_effects_in_biological_systems.pdf
[42]  Isaeva, V.V. (2013) Topological and Fractal Approaches to Systematics and Biodiversity. In: Riosmena-Rodriguez, R., Ed., Invertebrates: Classification, Evolution and Biodiversity, Nova Science Publishers, New York, 225-242.
https://www.researchgate.net/publication/286217812_Topological_and_fractal_approaches_to_systematics_and_biodiversity
[43]  Montagnier, L., et al. (2015) Transduction of DNA Information through Water and Electromagnetic Waves. Electromagnetic Biology and Medicine, 34, 106-112.
https://arxiv.org/pdf/1501.01620.pdf
https://doi.org/10.3109/15368378.2015.1036072
[44]  Huang, S., Ernberg, I. and Kauffman, S. (2009) Cancer Attractors: A Systems View of Tumors from a Gene Network Dynamics and Developmental Perspective. Seminars in Cell & Developmental Biology, 20, 869-876.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754594/
https://doi.org/10.1016/j.semcdb.2009.07.003
[45]  Delbrück, M. (1949) Unités biologiques douées de continuité génétique Colloques Internationaux du Centre National de la Recherche Scientifique: CNRS. CNRS, Paris.
[46]  Monod, J. and Jacob, F. (1961) Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 26, 389-401 https://doi.org/10.1101/SQB.1961.026.01.048
[47]  Kauffman, S.A. (1969) Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets. Journal of Theoretical Biology, 22, 437-467.
https://doi.org/10.1016/0022-5193(69)90015-0
[48]  Kauffman, S.A. (1969) Homeostasis and Differentiation in Random Genetic Control Networks. Nature Letters, 224, 177-178 https://doi.org/10.1038/224177a0
[49]  Kauffman, S.A. (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford.
https://doi.org/10.1093/oso/9780195079517.001.0001
[50]  Raj, A. and van Oudenaarden, A. (2008) Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell, 135, 216-226.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118044/
https://doi.org/10.1016/j.cell.2008.09.050
[51]  Chang, H.H., et al. (2008) Transcriptome-Wide Noise Controls Lineage Choice in Mammalian Progenitor Cells. Nature, 453, 544-547.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546414/
https://doi.org/10.1038/nature06965
[52]  Mojtahedi, M., et al. (2016) Cell Fate Decision as High-Dimensional Critical State Transition. PLOS Biology, 14, e2000640.
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2000640
https://doi.org/10.1371/journal.pbio.2000640
[53]  Babloyantz, A. and Destexhe, A. (1986) Low-Dimensional Chaos in an Instance of Epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 83, 3513-3517. https://www.pnas.org/content/pnas/83/10/3513.full.pdf
https://doi.org/10.1073/pnas.83.10.3513
[54]  Duval, C., Daneault, J.F., Hutchison, W.D. and Sadikot, A.F. (2016) A Brain Network Model Explaining Tremor in Parkinson’s Disease. Neurobiology of Disease, 85, 49-59. https://www.sciencedirect.com/science/article/pii/S0969996115300656
https://doi.org/10.1016/j.nbd.2015.10.009
[55]  Loganathan, R., et al. (2016) Extracellular Matrix Motion and Early Morphogenesis. Development, 143, 2056-2065. https://dev.biologists.org/content/143/12/2056
https://doi.org/10.1242/dev.127886
[56]  Lila Solnica-Krezel, L. and Eaton, S. (2003) Embryo Morphogenesis: Getting Down to Cells and Molecules. Development, 130, 4229-4233.
https://dev.biologists.org/content/130/18/4229
https://doi.org/10.1242/dev.00693
[57]  Forgacs, G. and Newman, S.A. (2005) Biological Physics of the Developing Embryo. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511755576
[58]  Goryachev, A.B. and Leda, M. (2017) Many Roads to Symmetry Breaking: Molecular Mechanisms and Theoretical Models of Yeast Cell Polarity. Molecular Biology of the Cell, 28, 370-380. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341721/
https://doi.org/10.1091/mbc.e16-10-0739

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413