全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

FDM 3D-Print on Thermoplastic Polyurethane (TPU) with Different Process Parameters Using Gyroid and Zigzag Infill Patterns

DOI: 10.4236/oalib.1111203, PP. 1-15

Subject Areas: Materials Engineering

Keywords: Thermoplastic Polyurethane (TPU), FDM, Print Parameters, Infill Pattern and Mechanical Performance

Full-Text   Cite this paper   Add to My Lib

Abstract

This study explores the impact of process parameters and infill patterns, namely zig-zag and gyroid, on Fused Deposition Modelling (FDM) 3D printing. The research investigates how variations in critical parameters like nozzle temperature, print speed, and bed temperature, coupled with different infill patterns, influence the mechanical performance of printed specimens. Tensile and flexural tests were conducted to assess strength, stiffness, and resilience. Results indicate that infill pattern selection significantly affects the mechanical properties, with the zig-zag pattern outperforming the gyroid pattern. The study also highlights the intricate interplay between process parameters and mechanical characteristics, identifying optimized combinations to enhance the overall performance of 3D-printed objects. This research contributes valuable insights into the symbiotic relationship between process parameters, infill patterns, and mechanical performance in FDM 3D printing.

Cite this paper

Yadavalli, V. R. , Myadam, A. K. and Telu, S. B. (2024). FDM 3D-Print on Thermoplastic Polyurethane (TPU) with Different Process Parameters Using Gyroid and Zigzag Infill Patterns. Open Access Library Journal, 11, e1203. doi: http://dx.doi.org/10.4236/oalib.1111203.

References

[1]  Maries, G.R.E., Bandur, G. and Rusu, G. (2008) Influence of Processing Temperature on Some Mechanical-Physical Properties of Thermoplastic Polyurethane Desmopan KA 8377 Used for Injection Moulding of Performance Sport Products. 53, 1-2.
[2]  Lin, T.A., Lin, J.-H. and Bao, L. (2021) A Study of Reusability Assessment and Thermal Behaviours for Thermoplastic Composite Materials after Melting Process: Polypropylene/Thermoplastic Polyurethane Blends. Journal of Cleaner Production, 279, Article 123473. https://doi.org/10.1016/j.jclepro.2020.123473
[3]  Ma, H. and Yang, Y. (2008) Rheology, Morphology and Mechanical Properties of Compatibilized Poly(Vinylidene Fluoride) (PVDF)/Thermoplastic Polyurethane (TPU) Blends. Polymer Testing, 27, 441-446.
https://doi.org/10.1016/j.polymertesting.2008.01.009
[4]  Rahmatabadi, D., Aberoumand, M., Soltanmohammadi, H., Soleyman, E., Ghasemi, I., Baniassadi, M., Abrinia, K., Bodaghi, M. and Baghani, M. (2022) 4D Printing Encapsulated Polycaprolactone—Thermoplastic Polyurethane with High Shape Memory Performances. Advanced Engineering Materials, 25, Article 2201309.
https://doi.org/10.1002/adem.202201309
[5]  Chacón, J.M., Caminero, M.A., García-Plaza, E. and Nunez, P.J. (2017) Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Materials & Design, 124, 143-157. https://doi.org/10.1016/j.matdes.2017.03.065
[6]  Ning, F., Cong, W., Hu, Z. and Huang, K. (2017) Additive Manufacturing of Thermoplastic Matrix Composites Using Fused Deposition Modelling: A Comparison of Two Reinforcements. Journal of Composite Materials, 15, 3733-3742.
https://doi.org/10.1177/0021998317692659
[7]  Zer, Z.K., Wang, F., Becker, M.L. and Weiss, R.A. (2016) Ionomers for Tunable Softening of Thermoplastic Polyurethane. Macromolecules, 49, 926-934.
https://doi.org/10.1021/acs.macromol.6b00005
[8]  Lin, T.A., Lin, J.-H. and Bao, L. (2020) Polypropylene/Thermoplastic Polyurethane Blends: Mechanical Characterizations, Recyclability and Sustainable Development of Thermoplastic Materials. Journal of Materials Research and Technology, 9, 5304-5312. https://doi.org/10.1016/j.jmrt.2020.03.056
[9]  Gao, Q., Feng, M., Li, E., Liu, C., Shen, C. and Liu, X. (2020) Mechanical, Thermal, and Rheological Properties of Ti3C2Tx MXene/Thermoplastic Polyurethane Nanocomposites. Macromolecular Materials and Engineering, 305, Article 2000343.
https://doi.org/10.1002/mame.202000343
[10]  Ahn, S.H., Montero, M., Odell, D., Roundy, S. and Wright, P.K. (2002) Anisotropic Material Properties of Fused Deposition Modeling ABS. Rapid Prototyping Journal, 8, 248-257. https://doi.org/10.1108/13552540210441166
[11]  Shaik, Y.P., Naidu, N.K., Yadavalli, V.R. and Muthyala, M.R. (2023) The Comparison of the Mechanical Characteristics of ABS Using Three Different Plastic Production Techniques. Open Access Library Journal, 10, e10097.
https://doi.org/10.4236/oalib.1110097
[12]  Farazin, A. and Mohammadimehr, M. (2021) Effect of Different Parameters on the Tensile Properties of Printed Polylactic Acid Samples by FDM: Experimental Design Tested with MDs Simulation. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.21203/rs.3.rs-273321/v1
[13]  Vaezi, M. and Chua, C.K. (2011) Effects of Layer Thickness and Binder Saturation Level Parameters on 3D Printing Process. The International Journal of Advanced Manufacturing Technology, 53, 275-284. https://doi.org/10.1007/s00170-010-2821-1
[14]  Schuster, J., Lutz. J., Shaik, Y.P. and Yadavalli, V.R. (2022) Recycling of Fluoro-Carbon-Elastomers—A Review. Advanced Industrial and Engineering Polymer Research, 5, 248-254. https://doi.org/10.1016/j.aiepr.2022.08.002
[15]  Sood, A.K., Ohdar, R.K. and Mahapatra, S.S. (2010) Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts. Materials & Design, 31, 287-295. https://doi.org/10.1016/j.matdes.2009.06.016
[16]  Rahmatabadi, D., Ghasemi, I., Baniassadi, M., Abrinia, K. and Baghani, M. (2022) 3D Printing of PLA-TPU with Different Component Ratios: Fracture Toughness, Mechanical Properties, and Morphology. Journal of Materials Research and Technology, 21, 3970-3981. https://doi.org/10.1016/j.jmrt.2022.11.024
[17]  Wady, P., Wasilewski, A., Brock, L., Edge, R., Baidak, A., McBride, C., Leay, L., Griffiths, A. and Vallés, C. (2020) Effect of Ionising Radiation on the Mechanical and Structural Properties of 3D Printed Plastics. Additive Manufacturing, 31, Article 100907. https://doi.org/10.1016/j.addma.2019.100907
[18]  Solomon, I.J., Sevvel, P. and Gunasekaran, J. (2021) A Review on the Various Processing Parameters in FDM. Materials Today Proceedings, 37, 509-514.
https://doi.org/10.1016/j.matpr.2020.05.484
[19]  Bikas, H., Stavropoulos, P. and Chryssolouris, G. (2016) Additive Manufacturing Methods and Modeling Approaches: A Critical Review. The International Journal of Advanced Manufacturing Technology, 83, 389-405.
https://doi.org/10.1007/s00170-015-7576-2
[20]  Srinivasan, R., Kumar, K.N., Ibrahim, A.J., Anandu, K.V. and Gurudhevan, R. (2020) Impact of Fused Deposition Process Parameter (Infill Pattern) on the Strength of PETG Part. Materials Today Proceedings, 27, 1801-1805.
https://doi.org/10.1016/j.matpr.2020.03.777

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413