全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Bacterial Adhesion on Lithium Disilicate Ceramics: Systematic Review

DOI: 10.4236/oalib.1110616, PP. 1-17

Subject Areas: Dentistry

Keywords: Biofilm, Bacterial Adhesion, Dental Ceramics, Lithium Disilicate

Full-Text   Cite this paper   Add to My Lib

Abstract

Introduction: All-ceramic systems are constantly being revised and updated to incorporate new ceramic materials. Most of the evidence for the clinical use of new ceramic materials comes from information on mechanical properties and chemical composition. However, information on bacterial adhesion to these new materials is scarce. The aim of this study is to provide a better overview of the importance of bacterial adhesion on lithium disilicate ceramics compared to other dental ceramics. Material and method: Pub-Med, Google scholar, Science direct databases were searched between October 2021 and October 2022 and updated in March 2023. Criteria included: Studies (in situ or in vivo biofilm) that evaluated bacterial adhesion to dental ceramics, (including lithium disilicate ceramics). Results: A total of 701 studies were identified in the initial survey. After reading the titles and abstracts, we were left with a total of 117 articles. We excluded 54 articles that did not comply with the inclusion criteria. We then excluded 49 articles after full-text evaluation of 63 articles, and finally retained those relevant to our systematic review (14 articles). Conclusion: Our systematic review reports that lithium disilicate exhibits higher bacterial adhesion than zirconia, but it is difficult to make definite conclusions based on the results reported. Material composition can influence initial bacterial adhesion; in this respect, further studies are needed to clarify whether there is a correlation between bacterial adhesion and the glass content of ceramics.

Cite this paper

Rhattas, S. , Andoh, A. and Sidqui, M. (2023). Bacterial Adhesion on Lithium Disilicate Ceramics: Systematic Review. Open Access Library Journal, 10, e616. doi: http://dx.doi.org/10.4236/oalib.1110616.

References

[1]  Kantorski, K.Z., Scotti, R., Valandro, L.F., Bottinao, M.A., KogaIto, C.Y. and Jorge, A.O. (2009) Surface Roughness and Bacterial Adherence to Resin Composites and Ceramics. Oral Health and Preventive Dentistry, 7, 29-32.
[2]  Tanner, J., Robinson, C., Söderling, E. and Vallittu, P. (2005) Early Plaque Formation on Fibre-Reinforced Composites in Vivo. Clinical Oral Investigations, 9, 154-160. https://doi.org/10.1007/s00784-005-0317-4
[3]  Auschill, T.M., Arweiler, N.B., Brecx, M., Reich, E., Sculean, A. and Netuschil. L. (2002) The Effect of Dental Restorative Materials on Dental Biofilm. European Journal of Oral Sciences, 110, 48-53. https://doi.org/10.1046/j.0909-8836.2001.101160.x
[4]  Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. and The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Journal of Clinical Epidemiology, 62, 1006-1012. https://doi.org/10.1016/j.jclinepi.2009.06.005
[5]  Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., et al. (2009) The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Annals of Internal Medicine, 151, W-65. https://doi.org/10.7326/0003-4819-151-4-200908180-00136
[6]  Tufanaru, C., Munn, Z., Aromataris, E., Campbell, J. and Hopp, L. (2020) Systematic Reviews of Effectiveness. JBI Manual for Evidence Synthesis, The Joanna Briggs Institute. https://doi.org/10.46658/JBIRM-17-03
[7]  Tagtekin, D.A., Ozyoney, G. and Yanikoglu, F. (2009) Two-Year Clinical Evaluation of IPS Empress II Ceramic Onlays/Inlays. Operative Dentistry, 34, 369-378. https://doi.org/10.2341/08-97
[8]  Albakry, M., Guazzato, M. and Swain, M.V. (2004) Influence of Hot Pressing on the Microstructure and Fracture Toughness of Two Pressable Dental Glass-Ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 71, 99-107. https://doi.org/10.1002/jbm.b.30066
[9]  Marquardt, P. and Strub, J.R. (2006) Survival Rates of IPS Empress 2 All-Ceramic Crowns and Fixed Partial Dentures: Results of a 5-Year Prospective Clinical Study. Quintessence International, 37, 253-259.
[10]  Esquivel-Upshaw, J.F., Anusavice, K.J., Young, H., Jones, J. and Gibbs, C. (2004) Clinical Performance of a Lithia Disilicate-Based Core Ceramic for Three-Unit Posterior FPDs. The International Journal of Prosthodontics, 17, 469-475.
[11]  Zarone, F., Di Mauro, M.I., Ausiello, P., Ruggiero, G. and Sorrentino, R. (2019) Current Status on Lithium Disilicate and Zirconia: A Narrative Review. BMC Oral Health, 19, Article No. 134. https://doi.org/10.1186/s12903-019-0838-x
[12]  Dal Piva, A.M.O., Contreras, L.P.C., Ribeiro, F.C., Anami, L.C., Camargo, S.E.A., Jorge, A.O.C. and Bottino, M.A. (2018) Monolithic Ceramics: Effect of Finishing Techniques on Surface Properties, Bacterial Adhesion and Cell Viability. Operative Dentistry, 43, 315-325. https://doi.org/10.2341/17-011-L
[13]  Vo, D.T., Arola, D., Romberg, E., Driscoll, C.F., Jabra-Rizk, M.A. and Masri, R. (2015) Adherence of Streptococcus mutans on Lithium Disilicate Porcelain Specimens. Journal of Prosthetic Dentistry, 114, 696-701. https://doi.org/10.1016/j.prosdent.2015.06.017
[14]  Contreras, L., Dal Piva, A., Ribeiro, F.C., Anami, L.C., Camargo, S., Jorge, A. and Bottino, M.A. (2018) Effects of Manufacturing and Finishing Techniques of Feldspathic Ceramics on Surface Topography, Biofilm Formation, and Cell Viability for Human Gingival Fibroblasts. Operative Dentistry, 43, 593-601. https://doi.org/10.2341/17-126-L
[15]  Poole, S.F., Pitondo-Silva, A., Oliveira-Silva, M., Moris, I.C.M. and Gomes, E.A. (2020) Influence of Different Ceramic Materials and Surface Treatments on the Adhesion of Prevotella intermedia. Journal of the Mechanical Behavior of Biomedical Materials, 111, Article ID: 104010.
[16]  Belli, R., Wendler, M., De Ligny, D., Cicconi, M.R., Petscheld, A., Peterlik, H. and Lohbauer, U. (2017) Chairside CAD/CAM Materials. Part 1: Measurement of Elastic Constants and Microstructural Characterization. Dental Materials, 33, 84-98. https://doi.org/10.1016/j.dental.2016.10.009
[17]  Pereira, G.K.R., Fraga, S., Montagner, A.F., Soares, F.Z.M., Kleverlaan, C.J. and Valandro, L.F. (2016) The Effect of Grinding on the Mechanical Behavior of Y-TZP Ceramics: A Systematic Review and Meta-Analyses. Journal of the Mechanical Behavior of Biomedical Materials, 63, 417-442. https://doi.org/10.1016/j.jmbbm.2016.06.028
[18]  Dobrzynski, M., Pajaczkowska, M., Nowicka, J., Jaworski, A., Kosior, P., Szymonowicz, M., Kuropka, P., Rybak, Z., Bogucki, Z.A., Filipiak, J., Targonska, S., Ciupa-Litwa, A., Han, A. and Wiglusz, R.J. (2019) Study of Surface Structure Changes for Selected Ceramics Used in the CAD/CAM System on the Degree of Microbial Colonization, in Vitro Tests. BioMed Research International, 2019, Article ID: 9130806. https://doi.org/10.1155/2019/9130806
[19]  Matalon, S., Safadi, D., Meirowitz, A. and Ormianer, Z. (2021) The Effect of Aging on the Roughness and Bacterial Adhesion of Lithium Disilicate and Zirconia Ceramics. Journal of Prosthodontics, 30, 440-446. https://doi.org/10.1111/jopr.13257
[20]  Bremer, F., Grade, S., Kohorst, P. and Stiesch, M. (2011) In Vivo Biofilm Formation on Different Dental Ceramics. Quintessence International, 42, 565-574. https://doi.org/10.4103/0974-6781.76425
[21]  Ghanta, H., Ozer, F., Yi, Y.F., Pande, R., Irmak, O., Dirienzo, J. and Blatz, M. (2015) Effect of Material Surfaces on Bacterial Adherence. 2015 IADR/AADR/CADR General Session, Boston, 3 March 2015.
[22]  Hussein, A.I., Hajwal, S.I. and Ab-Ghani, Z. (2016) Bacterial Adhesion on Zirconia, Lithium Desilicated and Gold Crowns—In Vivo Study. Advances in Dentistry & Oral Health, 1, Article ID: 555574. https://doi.org/10.19080/ADOH.2016.01.555574
[23]  Jalalian, R., Shalchi, M., Hajian-Tilaki, A. and Aghajani Nargesi, R. (2018) Adhesion of Streptococcus Mutans to Zirconia, Enamel, IPS Empress II, Noble Alloy and Base-Metal: An in-Vitro Comparative Study. Journal of Dentomaxillofacial Radiology, Pathology and Surgery, 7, 1-6.
[24]  Engel, A.S., Kranz, H.T., Schneider, M., Tietze, J.P., Piwowarcyk, A., Kuzius, T., Arnold, W. and Naumova, E.A. (2020) Biofilm Formation on Different Dental Restorative Materials in the Oral Cavity. BMC Oral Health, 20, Article No. 162. https://doi.org/10.1186/s12903-020-01147-x
[25]  Abdalla, M.M., Ali, I.A.A., Khan, K., Mattheos, N., Murbay, S., Matinlinna, J.P. and Neelakantan, P. (2021) The Influence of Surface Roughening and Polishing on Microbial Biofilm Development on Different Ceramic Materials. Journal of Prosthodontics, 30, 447-453. https://doi.org/10.1111/jopr.13260
[26]  Hahnel, S., Rosentritt, M., Handel, G. and Bürgers, R. (2009) Surface Characterization of Dental Ceramics and Initial Streptococcal Adhesion in Vitro. Dental Materials, 25, 969-975. https://doi.org/10.1016/j.dental.2009.02.003
[27]  Øilo, M. and Bakken, V. (2015) Biofilm and Dental Biomaterials. Materials, 8, 2887-2900. https://doi.org/10.3390/ma8062887
[28]  Teughels, W., Van Assche, N., Sliepen, I. and Quirynen, M. (2006) Effect of Material Characteristics and/or Surface Topography on Biofilm Development. Clinical Oral Implants Research, 17, 68-81. https://doi.org/10.1111/j.1600-0501.2006.01353.x
[29]  Nishitani Shibasaki, P.A., Cavalli, V., Oliveira, M.C., Barbosa, J.P., Gomes Boriollo, M.F. and Marcondes Martins, L.R. (2021) Influence of Surface Treatment on the Physical Properties and Biofilm Formation of Zirconia-Reinforced Lithium Silicate Ceramics: In Vitro Trial. The International Journal of Prosthodontics, 460-468. https://doi.org/10.11607/ijp.7192
[30]  Bollen, C.M., Lambrechts, P. and Quirynen, M. (1997) Comparison of Surface Roughness of Oral Hard Materials to the Threshold Surface Roughness for Bacterial Plaque Retention: A Review of the Literature. Dental Materials, 13, 258-269. https://doi.org/10.1016/S0109-5641(97)80038-3
[31]  Kawai, K., Urano, M. and Ebisu, S. (2000) Effect of Surface Roughness of Porcelain on Adhesion of Bacteria and Their Synthesizing Glucans. Journal of Prosthetic Dentistry, 83, 664-667. https://doi.org/10.1067/mpr.2000.107442
[32]  Dutra, D.A.M., Pereira, G.K.R. and Kantorski, K.Z. (2017) Grinding with Diamond Burs and Hydrothermal Aging of a Y-TZP Material: Effect on the Material Surface Characteristics and Bacterial Adhesion. Operative Dentistry, 42, 669-678. https://doi.org/10.2341/16-108-L
[33]  Meier, R., Hauser-Gerspach, I., Luüthy, H. and Meyer, J. (2008) Adhesion of Oral Streptococci to All-Ceramics Dental Restorative Materials in Vitro. Journal of Materials Science: Materials in Medicine, 19, 3249-3253. https://doi.org/10.1007/s10856-008-3457-7
[34]  Brentel, A.S., Kantorski, K.Z., Valandro, L.F., Fucio, S.B., Puppin-Rontani, R.M. and Bottino, M.A. (2011) Confocal Laser Microscopic Analysis of Biofilm on Newer Feldspar Ceramic. Operative Dentistry, 36, 43-51. https://doi.org/10.2341/10-093-LR
[35]  Scotti, R., Kantorski, K.Z., Monaco, C., Valandro, L.F., Ciocca, L. and Bottino, M.A. (2007) SEM Evaluation of in Situ Early Bacterial Colonization on a Y-TZP Ceramic: A Pilot Study International. Journal of Prosthodontics, 20, 419-422.
[36]  Aktug, S.L., Durdu, S., Yalcin, E., Çavusoglu, K. and Usta, M. (2017) Bioactivity and Biocompatibility of Hydroxyapatite-Based Bioceramic Coatings on Zirconium by Plasma Electrolytic Oxidation. Materials Science and Engineering: C, 71, 1020-1027. https://doi.org/10.1016/j.msec.2016.11.012
[37]  Mehl, C., Kern, M., Schütte, A.M., Kadem, L.F. and Selhuber-Unkel, C. (2016) Adhesion of Living Cells to Abutment Materials, Dentin, and Adhesive Luting Cement with Different Surface Qualities. Dental Materials, 32, 1524-1535. https://doi.org/10.1016/j.dental.2016.09.006
[38]  Viitaniemi, L., Abdulmajeed, A., Sulaiman, T., Söderling, E. and Närhi, T. (2017) Adhesion and Early Colonization of S. Mutans on Lithium Disilicate Reinforced Glass-Ceramics, Monolithic Zirconia and Dual Cure Resin Cement. European Journal of Prosthodontics and Restorative Dentistry, 25, 228-234.
[39]  Sharma, P.K. and Hanumantha Rao, K. (2002) Analysis of Different Approaches for Evaluation of Surface Energy of Microbial Cells by Contact Angle Goniometry. Advances in Colloid and Interface Science, 98, 341-463. https://doi.org/10.1016/S0001-8686(02)00004-0
[40]  Minagi, S., Miyake, Y., Inagaki, K., Tsuru H. and Suginaka H. (1982) Hydrophobic Interaction in Candida albicans and Candida tropicalis Adherence to Various Denture Base Resin Materials. Infection and Immunity, 47, 11-14. https://doi.org/10.1128/iai.47.1.11-14.1985
[41]  Rosentritt, M., Behr, M., Buürgers, R., Feilzer, A.J. and Hahnel, S. (2009) In Vitro Adherence of Oral Streptococci to Zirconia Core and Veneering Glass-Ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B, 257-263. https://doi.org/10.1002/jbm.b.31397
[42]  Kang, D.H., Choi, H., Yoo, Y.J., Kim, J.H., Park, Y.B. and Moon, H.S. (2017) Effect of Polishing Method on Surface Roughness and Bacterial Adhesion of Zirconia-Porcelain Veneer. Ceramics International, 43, 5382-5387. https://doi.org/10.1016/j.ceramint.2016.11.036
[43]  Kreve, S. and Dos Reis, A.C. (2021) Bacterial Adhesion to Biomaterials: What Regulates This Attachment? A Review. Japanese Dental Science Review, 57, 85-96. https://doi.org/10.1016/j.jdsr.2021.05.003
[44]  De Castro, D.T., do Nascimento, C., Alves, O.L., de Souza Santos, E., Agnelli, J.A.M. and Dos Reis, A.C. (2018) Analysis of the Oral Microbiome on the Surface of Modified Dental Polymers. Archives of Oral Biology, 93, 107-114. https://doi.org/10.1016/j.archoralbio.2018.06.005

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413