全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Biotechnological Drug Development—The Role of Proteins, Genes, In-Silico, and Stem Cells in Designing Models for Enhanced Drug Discovery

DOI: 10.4236/oalib.1110520, PP. 1-20

Subject Areas: Biotechnology, Bioengineering

Keywords: Drug Discovery, Biotechnology, Diseases, Genes, Protein, In-Silico, Stem Cells, mRNA, DNA

Full-Text   Cite this paper   Add to My Lib

Abstract

The application of biotechnology in drug discovery has been discovered to be a promising and resourceful approach for the discovery of novel therapeutic candidates that comes with less time and cost than the traditional ways of drug discovery. This has additionally endowed researchers with the necessary understanding of diseases, which offers exceptional methods for treating patients. Additionally, diagnosis and treatment are becoming increasingly intertwined with the help of biotechnology. Today, researchers in biotechnology deal with the root of diseases and find solutions through therapeutic agents, hence, improving quality of life. The discovery of drugs in recent days is practically challenging without good modeling in biotechnology, this wonderful technique is now being adopted in the discovery of new and effective classes of drugs which include but are not limited to gene therapy, cancer vaccines, proteins, and even enzymes. In this current review, we review the efforts so far in the usage of this approach in drug discovery. The review targets the biotechnological application and design implementation in drug discovery. It explains the use of proteins, genes, in-silico, and stem cells in designing models for enhanced drug discovery, the chemical similarity network for drug discovery, and future recommendations on the integration of AI in biotechnology.

Cite this paper

Suleiman, T. A. , Francis, A. C. , Ibrahim, A. , Jonn-Joy, A. O. , Adebiyi, E. and Anyimadu, D. T. (2023). Biotechnological Drug Development—The Role of Proteins, Genes, In-Silico, and Stem Cells in Designing Models for Enhanced Drug Discovery. Open Access Library Journal, 10, e520. doi: http://dx.doi.org/10.4236/oalib.1110520.

References

[1]  Trosset, J.Y. and Carbonell, P. (2015) Synthetic Biology for Pharmaceutical Drug Discovery. Drug Design, Development, and Therapy, 9, 6285-6302. https://doi.org/10.2147/DDDT.S58049
[2]  Duelen, R., Corvelyn, M., Tortorella, I., Leonardi, L., Chai, Y.C. and Sampaolesi, M. (2019) Medicinal Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery and Development. In: Matei, F. and Zirra, D., Eds., Introduction to Biotech Entrepreneurship: From Idea to Business, Springer, Berlin, 89-128. https://doi.org/10.1007/978-3-030-22141-6_5
[3]  Ho, R.J. (2013) Biotechnology and Biopharmaceuticals: Transforming Proteins and Genes into Drugs. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9781118660485
[4]  Miller, H.I. (2013) Biotechnology. In: Maloy, S. and Hughes, K., Eds., Brenner’s Encyclopedia of Genetics, 2nd Edition, Elsevier, Amsterdam, 346-348. https://doi.org/10.1016/B978-0-12-374984-0.00157-1
[5]  Gaisser, S. and Nusser, M. (2010) Stellenwert der Biotechnologie in der pharmazeutischen Wirkstoffentwicklung. Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen, 104, 732-737. https://doi.org/10.1016/j.zefq.2010.05.001
[6]  Neagu, M., Albulescu, R. and Tanase, C. (2015) Biotechnology Landscape in Cancer Drug Discovery. Future Science OA, 1, FSO12. https://doi.org/10.4155/fso.15.10
[7]  Ward, S.J. (2001) Impact of Genomics in Drug Discovery. BioTechniques, 31, 1-2. https://doi.org/10.2144/01313dd01
[8]  Kabadi, A., McDonnell, E., Frank, C.L. and Drowley, L. (2020) Applications of Functional Genomics for Drug Discovery. Sage Journals, 25, 823-842. https://doi.org/10.1177/2472555220902092
[9]  Peter, H. (2015) How Genome Sequencing Is Aiding Drug Research and Development. https://www.proclinical.com/blogs/2015-7/genome-sequencing-is-aiding-drug-research-and-development
[10]  Wang, L., McLeod, H.L. and Weinshilboum, R.M. (2011) Genomics and Drug Response. New England Journal of Medicine, 364, 1144-1153. https://doi.org/10.1056/NEJMra1010600
[11]  Lundstrom, K. (2011) Genomics and Drug Discovery. Future Medicinal Chemistry, 3, 1855-1858. https://doi.org/10.4155/fmc.11.140
[12]  Spreafico, R., Leah, B., Grossse, J., Virgin, H. and Telenti, A. (2020) Advances in Genomics for Drug Development. Genes, 11, 942. https://doi.org/10.3390/genes11080942
[13]  Neha, S. and Harikumar, L. (2013) Use of Genomics and Proteomics in Pharmaceutical Drug Discovery and Development: A Review. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 24-28.
[14]  Bumol, T.F. and Watanabe, A.M. (2001) Genetic Information, Genomic Technologies, and the Future of Drug Discovery. JAMA, 285, 551-555. https://doi.org/10.1001/jama.285.5.551
[15]  Zhang, H.M., Nan, Z.R., Hui, G.Q., Liu, X.H. and Sun, Y. (2014) Application of Genomics and Proteomics in Drug Target Discovery. Genetics and Molecular Research: GMR, 13, 198-204. https://doi.org/10.4238/2014.January.10.11
[16]  Amiri-Dashatan, N., Koushki, M., Abbaszadeh, H.A., Rostami-Nejad, M. and Rezaei-Tavirani, M. (2018) Proteomics Applications in Health: Biomarker and Drug Discovery and Food Industry. Iranian Journal of Pharmaceutical Research: IJPR, 17, 1523.
[17]  Frantzi, M., Latosinska, A. and Mischak, H. (2019) Proteomics in Drug Development: The Dawn of a New Era? Proteomics-Clinical Applications, 13, Article ID: 1800087. https://doi.org/10.1002/prca.201800087
[18]  Jhanker, Y., Kadir, M., Khan, R. and Hasan, R. (2012) Proteomics in Drug Discovery, Journal of Applied Pharmaceutical Science, 2, 1-12. https://doi.org/10.7324/JAPS.2012.2801
[19]  Hewick, R.M., Lu, Z. and Wang, J.H. (2003) Proteomics in Drug Discovery. In: Advances in Protein Chemistry, Vol. 65, Elsevier, Amsterdam, 309-342. https://doi.org/10.1016/S0065-3233(03)01024-6
[20]  Walgran, J.L. and Thompson, D.C. (2004) Application of Proteomic Technologies in the Drug Development Process. Toxicology Letters, 149, 377-385. https://doi.org/10.1016/j.toxlet.2003.12.047
[21]  Gromova, M., Vaggelas, A., Dallmann, G. and Seimetz, D. (2020) Biomarkers: Opportunities and Challenges for Drug Development in the Current Regulatory Landscape. Biomarker Insights, 15. https://doi.org/10.1177/1177271920974652
[22]  Schomaker, S., Ramaiah, S., Khan, N. and Burkhardt, J. (2019) Safety Biomarker Applications in Drug Development. The Journal of Toxicological Sciences, 44, 225-235. https://doi.org/10.2131/jts.44.225
[23]  Shendure, J. and Ji, H. (2008) Next-Generation DNA Sequencing. Nature Biotechnology, 26, 1135-1145. https://doi.org/10.1038/nbt1486
[24]  McCarthy, M.I. and Hirschhorn, J.N. (2008) Genome-Wide Association Studies: Potential Next Steps on a Genetic Journey. Human Molecular Genetics, 17, R156-R165. https://doi.org/10.1093/hmg/ddn289
[25]  Altelaar, A.F., Munoz, J. and Heck, A.J. (2013) Next-Generation Proteomics: Towards an Integrative View of Proteome Dynamics. Nature Reviews Genetics, 14, 35-48. https://doi.org/10.1038/nrg3356
[26]  Aebersold, R. and Mann, M. (2016) Mass-Spectrometric Exploration of Proteome Structure and Function. Nature, 537, 347-355. https://doi.org/10.1038/nature19949
[27]  Aksu, B., Sezer, A.D., Yegen, G. and Kusçu, L. (2016) QbD Implementation in Biotechnological Product Development Studies. In: Chen, T.S. and Chai, S.C., Eds., Special Topics in Drug Discovery, IntechOpen, London, 133-155. https://doi.org/10.5772/66296
[28]  Nayak, A.K., Ahmed, S.A., Beg, S., Tabish, M. and Hasnain, M.S. (2019) Application of Quality by Design for the Development of Biopharmaceuticals. In: Beg, S. and Hasnain, M.S., Eds., Pharmaceutical Quality by Design, Academic Press, Cambridge, 399-411. https://doi.org/10.1016/B978-0-12-815799-2.00019-8
[29]  Rathore, A.S. and Winkle, H. (2009) Quality by Design for Biopharmaceuticals. Nature Biotechnology, 27, 26-34. https://doi.org/10.1038/nbt0109-26
[30]  Varu, R.K. and Khanna, A. (2010) Opportunities and Challenges to Implementing the Quality by Design Approach in Generic Drug Development. Journal of Generic Medicines, 7, 60-73. https://doi.org/10.1057/jgm.2009.37
[31]  Rathore, A.S. (2009) Roadmap for Implementation of Quality by Design (QbD) for Biotechnology Products. Trends in Biotechnology, 27, 546-553. https://doi.org/10.1016/j.tibtech.2009.06.006
[32]  Tomba, E., Facco, P., Bezzo, F. and Barolo, M. (2013) Latent Variable Modeling to Assist the Implementation of Quality-by-Design Paradigms in Pharmaceutical Development and Manufacturing: A Review. International Journal of Pharmaceutics, 457, 283-297. https://doi.org/10.1016/j.ijpharm.2013.08.074
[33]  Yu, L.X. (2008) Pharmaceutical Quality by Design: Product and Process Development, Understanding, and Control. Pharmaceutical Research, 25, 781-791. https://doi.org/10.1007/s11095-007-9511-1
[34]  Yu, L.X., Amidon, G., Khan, M.A., Hoag, S.W., Polli, J., Raju, G.K. and Woodcock, J. (2014) Understanding Pharmaceutical Quality by Design. The AAPS Journal, 16, 771-783. https://doi.org/10.1208/s12248-014-9598-3
[35]  Thompson, R.A., Isin, E.M., Li, Y., Weaver, R., Weidolf, L., Wilson, I. and Kenna, J.G. (2011) Risk Assessment and Mitigation Strategies for Reactive Metabolites in Drug Discovery and Development. Chemical-Biological Interactions, 192, 65-71. https://doi.org/10.1016/j.cbi.2010.11.002
[36]  Zhang, X., Lionberger, R.A., Davit, B.M. and Yu, L.X. (2011) Utility of Physiologically Based Absorption Modeling in Implementing Quality by Design in Drug Development. The AAPS Journal, 13, 59-71. https://doi.org/10.1208/s12248-010-9250-9
[37]  Hu, L., Fawcett, J.P. and Gu, J. (2012) Protein Target Discovery of Drug and Its Reactive Intermediate Metabolite by Using Proteomic Strategy. Acta Pharmaceutica Sinica B, 2, 126-136. https://doi.org/10.1016/j.apsb.2012.02.001
[38]  Dimitrov, D.S. (2012) Therapeutic Proteins. In: Voynov, V. and Caravella, J.A., Eds., Therapeutic Proteins Methods and Protocols, Vol. 899, Springer, Berlin, 1-26. https://doi.org/10.1007/978-1-61779-921-1_1
[39]  Zheng, J., Mehl, J., Zhu, Y., Xin, B. and Olah, T. (2014) Application and Challenges in Using LC-MS Assays for Absolute Quantitative Analysis of Therapeutic Proteins in Drug Discovery. Bioanalysis, 6, 859-879. https://doi.org/10.4155/bio.14.36
[40]  Daub, H., Godl, K., Brehmer, D., Klebl, B. and Müller, G. (2004) Evaluation of Kinase Inhibitor Selectivity by Chemical Proteomics. Assay and Drug Development Technologies, 2, 215-224. https://doi.org/10.1089/154065804323056558
[41]  Staker, B.L., Buchko, G.W. and Myler, P.J. (2015) Recent Contributions of Structure-Based Drug Design to the Development of Antibacterial Compounds. Current Opinion in Microbiology, 27, 133-138. https://doi.org/10.1016/j.mib.2015.09.003
[42]  Moellering, R.E. and Cravatt, B.F. (2012) How Chemoproteomics Can Enable Drug Discovery and Development. Chemistry & Biology, 19, 11-22. https://doi.org/10.1016/j.chembiol.2012.01.001
[43]  Debouck, C. (2009) Integrating Genomics across Drug Discovery and Development. Toxicology Letters, 186, 9-12. https://doi.org/10.1016/j.toxlet.2008.09.011
[44]  Bahadduri, P.M., Polli, J.E., Swaan, P.W. and Ekins, S. (2010) Targeting Drug Transporters-Combining in Silico and in Vitro Approaches to Predict in Vivo. In: Yan, Q., Ed., Membrane Transporters in Drug Discovery and Development, Springer, Berlin, 65-103. https://doi.org/10.1007/978-1-60761-700-6_4
[45]  Gomez-Lechon, M.J., Lahoz, A., Gombau, L., Castell, J.V. and Donato, M.T. (2010) In Vitro Evaluation of Potential Hepatotoxicity Induced by Drugs. Current Pharmaceutical Design, 16, 1963-1977. https://doi.org/10.2174/138161210791208910
[46]  Vandana, U.K., Rajkumari, J., Singha, L.P., Satish, L., Alavilli, H., Sudheer, P.D. and Pandey, P. (2021) The Endophytic Microbiome as a Hotspot of Synergistic Interactions, with Prospects of Plant Growth Promotion. Biology, 10, Article No. 101. https://doi.org/10.3390/biology10020101
[47]  Risueño, I., Valencia, L., Jorcano, J.L. and Velasco, D. (2021) Skin-on-a-Chip Models: General Overview and Future Perspectives. APL Bioengineering, 5, Article ID: 030901. https://doi.org/10.1063/5.0046376
[48]  Van Vliet, P., Sluijter, J.P., Doevendans, P.A. and Goumans, M.J. (2007) Isolation and Expansion of Resident Cardiac Progenitor Cells. Expert Review of Cardiovascular Therapy, 5, 33-43. https://doi.org/10.1586/14779072.5.1.33
[49]  Nirmalanandhan, V.S. and Sittampalam, G.S. (2009) Stem Cells in Drug Discovery, Tissue Engineering, and Regenerative Medicine: Emerging Opportunities and Challenges. Journal of Biomolecular Screening, 14, 755-768. https://doi.org/10.1177/1087057109336591
[50]  Mimeault, M. and Batra, S.K. (2006) Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies. Stem Cells, 24, 2319-2345. https://doi.org/10.1634/stemcells.2006-0066
[51]  Keung, A.J., Kumar, S. and Schaffer, D.V. (2010) Presentation Counts: Microenvironmental Regulation of Stem Cells by Biophysical and Material Cues. Annual Review of Cell and Developmental Biology, 26, 533-556. https://doi.org/10.1146/annurev-cellbio-100109-104042
[52]  Augello, A., Kurth, T.B. and De Bari, C. (2010) Mesenchymal Stem Cells: A Perspective from in Vitro Cultures to in Vivo Migration and Niches. European Cells and Materials, 20, e33. https://doi.org/10.22203/eCM.v020a11
[53]  Hunter, P.J. and Borg, T.K. (2003) Integration from Proteins to Organs: The Physiome Project. Nature Reviews Molecular Cell Biology, 4, 237-243. https://doi.org/10.1038/nrm1054
[54]  Noble, D. (2002) Modeling the Heart—From Genes to Cells to the Whole Organ. Science, 295, 1678-1682. https://doi.org/10.1126/science.1069881
[55]  Bassingthwaighte, J.B. and Vinnakota, K.C. (2004) The Computational Integrated Myocyte: A View into the Virtual Heart. Annals of the New York Academy of Sciences, 1015, 391-404. https://doi.org/10.1196/annals.1302.034
[56]  Wang, F.Y. and Wong, P.K. (2013) Intelligent Systems and Technology for Integrative and Predictive Medicine: An ACP Approach. ACM Transactions on Intelligent Systems and Technology (TIST), 4, 1-6. https://doi.org/10.1145/2438653.2438667
[57]  Li, S., Zhang, B. and Zhang, N. (2011) Network Target for Screening Synergistic Drug Combinations with Application to Traditional Chinese Medicine. BMC Systems Biology, 5, 1-13. https://doi.org/10.1186/1752-0509-5-S1-S10
[58]  Kuhn, M., Campillos, M., Letunic, I., Jensen, L.J. and Bork, P. (2010) A Side Effect Resource to Capture Phenotypic Effects of Drugs. Molecular Systems Biology, 6, 343. https://doi.org/10.1038/msb.2009.98
[59]  Ekins, S., Williams, A.J., Krasowski, M.D. and Freundlich, J.S. (2011) In Silico Repositioning of Approved Drugs for Rare and Neglected Diseases. Drug Discovery Today, 16, 298-310. https://doi.org/10.1016/j.drudis.2011.02.016
[60]  Mendrick, D.L. (2011) Transcriptional Profiling to Identify Biomarkers of Disease and Drug Response. Pharmacogenomics, 12, 235-249. https://doi.org/10.2217/pgs.10.184
[61]  Mah, J.T., Low, E.S. and Lee, E. (2011) In Silico SNP Analysis and Bioinformatics Tools: A Review of the State of the Art to Aid Drug Discovery. Drug Discovery Today, 16, 800-809. https://doi.org/10.1016/j.drudis.2011.07.005
[62]  Liu, Y., Wang, L., Kikuiri, T., Akiyama, K., Chen, C., Xu, X. and Shi, S. (2020) Mesenchymal Stem Cell-Based Tissue Regeneration Is Governed by Recipient T Lymphocytes via IFN-γ and TNF-α. Nature Medicine, 24, 1434-1442.
[63]  Bhatia, S.N. and Ingber, D.E. (2014) Microfluidic Organs-on-Chips. Nature Biotechnology, 32, 760-772. https://doi.org/10.1038/nbt.2989
[64]  Murphy, S.V. and Atala, A. (2017) 3D Bioprinting of Tissues and Organs. Nature Biotechnology, 35, 213-222.
[65]  Clevers, H. (2016) Modeling Development and Disease with Organoids. Cell, 165, 1586-1597. https://doi.org/10.1016/j.cell.2016.05.082
[66]  Abaci, H.E., Shen, Y.I. and Wu, J.C. (2015) In Vivo Imaging of Embryonic Stem Cells Reveals Patterns of Survival and Immune Rejection Following Transplantation. Stem Cells and Development, 24, 321-330.
[67]  Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131, 861-872. https://doi.org/10.1016/j.cell.2007.11.019
[68]  Walters, W.P. and Murcko, M.A. (2002) Prediction of “Drug-Likeness”. Advanced Drug Delivery Reviews, 54, 255-271. https://doi.org/10.1016/S0169-409X(02)00003-0
[69]  Lavecchia, A. and Di Giovanni, C. (2013) Virtual Screening Strategies in Drug Discovery: A Critical Review. Current Medicinal Chemistry, 20, 2839-2860. https://doi.org/10.2174/09298673113209990001
[70]  Cheng, F., Li, W., Wu, Z., Wang, X., Zhang, C., Li, J. and Tang, Y. (2013) Prediction of Polypharmacological Profiles of Drugs by the Integration of Chemical, Side Effect, and Therapeutic Space. Journal of Chemical Information and Modeling, 53, 753-762. https://doi.org/10.1021/ci400010x
[71]  Kitchen, D.B., Decornez, H., Furr, J.R. and Bajorath, J. (2004) Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nature Reviews Drug Discovery, 3, 935-949. https://doi.org/10.1038/nrd1549
[72]  Smith, A., Ammar, R., Nislow, C., Giaever, G. (2010) A Survey of Yeast Genomic Assays for Drug and Target Discovery. Pharmacology & Therapeutics, 127, 156-164. https://doi.org/10.1016/j.pharmthera.2010.04.012
[73]  Nermin, P.K., Murodzhon, A. and Murat, C. (2014) A Drug Similarity Network for Understanding Drug Mechanism of Action. Journal of Bioinformatics and Computational Biology, 12, Article ID: 1441007. https://doi.org/10.1142/S0219720014410078
[74]  Yan, X., Liao, C., Liu, Z., Hagler, A.T., Gu, Q. and Xu, J. (2015) Chemical Structure Similarity Search for Ligand-Based Virtual Screening: Methods and Computational Resources. Current Drug Targets, 16, 1580-1585.
[75]  Maggiora, G., Vogt, M., Stumpfe, D. and Bajorath, J. (2014) Molecular Similarity in Medicinal Chemistry. Journal of Medicinal Chemistry, 57, 3186-3204. https://doi.org/10.1021/jm401411z
[76]  Faulon, J.L. and Bender, A. (2010) Handbook of Chemoinformatics Algorithms. CRC Press, Boca Raton. https://doi.org/10.1201/9781420082999
[77]  Lee, K. (2010) Statistical Bioinformatics: A Guide for Life and Biomedical Science Researchers. Wiley-Blackwell, Hoboken.
[78]  Devinyak, O., Havrylyuk, D. and Lesyk, R. (2014) 3D-MoRSE Descriptors Explained. Journal of Molecular Graphics and Modelling, 54, 194-203. https://doi.org/10.1016/j.jmgm.2014.10.006
[79]  Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K. and Müller, H. (2023) AI for Life: Trends in Artificial Intelligence for Biotechnology. New Biotechnology, 74, 16-24. https://doi.org/10.1016/j.nbt.2023.02.001
[80]  Suleiman, T.A., Tolulope, A.M., Wuraola, F.O., Olorunfemi, R., Kasali, W.A., Okorocha, B.O., Dirisu, C. and Njoku, P.C. (2023) Overview of Cancer Management—The Role of Medical Imaging and Machine Learning Techniques in Early Detection of Cancer: Prospects, Challenges, and Future Directions. Open Access Library Journal, 10, e10014. https://doi.org/10.4236/oalib.1110014
[81]  Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R.K. and Kumar, P. (2021) Artificial Intelligence to Deep Learning: Machine Intelligence Approach for Drug Discovery. Molecular Diversity, 25, 1315-1360. https://doi.org/10.1007/s11030-021-10217-3
[82]  Saldívar-González, F.I., Aldas-Bulos, V.D., Medina-Franco, J.L. and Plisson, F. (2022) Natural Product Drug Discovery in the Artificial Intelligence Era. Chemical Science, 13, 1526-1546. https://doi.org/10.1039/D1SC04471K
[83]  Tripathi, A., Misra, K., Dhanuka, R. and Singh, J.P. (2022) Artificial Intelligence in Accelerating Drug Discovery and Development. Recent Patents on Biotechnology, 17, 9-23. https://doi.org/10.2174/1872208316666220802151129

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413