全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Antiviral Theory Might Help to Develop Drug-Resistance-Free Antimalarial Drugs

DOI: 10.4236/oalib.1110505, PP. 1-8

Subject Areas: Virology

Keywords: Virus, Antiviral Theory, Malaria, Malaria Parasite, Sporozoite, Hepatocyte, Liver, Drug Resistance, Drug-Resistance-Free Antimalarial Drug

Full-Text   Cite this paper   Add to My Lib

Abstract

Based on a novel antiviral theory, the reason why a virus can infect its target cells is because the gene expression pattern in the target cells is suitable for viral infection. Therefore, the alteration of the gene expression pattern in target cells means a reduced susceptibility to all viral infections. Analogously, the reason why sporozoites of malaria parasites can infect hepatocytes is because the gene expression pattern in hepatocytes is suitable for sporozoite infection. If a drug could be used to temporally alter the gene expression pattern in hepatocytes, the susceptibility to sporozoite liver infection will be reduced and thus could decrease or block infection of malaria. Since the drug only acts on hepatocytes, the malaria parasite will not develop resistance to this drug even after long-time repeated exposure.

Cite this paper

Li, G. (2023). Antiviral Theory Might Help to Develop Drug-Resistance-Free Antimalarial Drugs. Open Access Library Journal, 10, e505. doi: http://dx.doi.org/10.4236/oalib.1110505.

References

[1]  Sidhu, A.B., Verdier-Pinard, D. and Fidock, D.A. (2002) Chloroquine Resistance in Plasmodium falciparum Malaria Parasites Conferred by pfcrt Mutations. Science, 298, 210-213. https://doi.org/10.1126/science.1074045
[2]  Bjorkman, A. and Phillips-Howard, P.A. (1990) The Epidemiology of Drug-Resistant Malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 84, 177-180. https://doi.org/10.1016/0035-9203(90)90246-B
[3]  Cowman, A.F., Morry, M.J., Biggs, B.A., Cross, G.A. and Foote, S.J. (1988) Amino Acid Changes Linked to Pyrimethamine Resistance in the Dihydrofolate Reductase-Thymidylate Synthase Gene of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 85, 9109-9113. https://doi.org/10.1073/pnas.85.23.9109
[4]  Wang, P., Read, M., Sims, P.F.G. and Hyde, J.E. (1997) Sulfadoxine Resistance in the Human Malaria Parasite Plasmodium falciparum Is Determined by Mutations in Dihydropteroate Synthetase and an Additional Factor Associated with Folate Utilization. Molecular Microbiology, 23, 979-986. https://doi.org/10.1046/j.1365-2958.1997.2821646.x
[5]  Yeka, A., Kigozi, R., Conrad, M.D., Lugemwa, M., Okui, P., Katureebe, C., et al. (2016) Artesunate/Amodiaquine versus Artemether/Lumefantrine for the Treatment of Uncomplicated Malaria in Uganda: A Randomized Trial. The Journal of Infectious Diseases, 213, 1134-1142. https://doi.org/10.1093/infdis/jiv551
[6]  Price, R.N., Uhlemann, A.-C., Brockman, A., McGready, R., Ashley, E., Phaipun, L., et al. (2004) Mefloquine Resistance in Plasmodium falciparum and Increased pfmdr1 Gene Copy Number. Lancet, 364, 438-447. https://doi.org/10.1016/S0140-6736(04)16767-6
[7]  Ross, L.S., Dhingra, S.K., Mok, S., Yeo, T., Wicht, K.J., Kümpornsin, K., et al. (2018) Emerging Southeast Asian PfCRT Mutations Confer Plasmodium falciparum Resistance to the First-Line Antimalarial Piperaquine. Nature Communications, 9, Article No. 3314. https://doi.org/10.1038/s41467-018-05652-0
[8]  Madamet, M., Briolant, S., Amalvict, R., Benoit, N., Becuiba, H., Cren, J., et al. (2016) The Plasmodium falciparum Chloroquine Resistance Transporter Is Associated with the Ex Vivo P. Falciparum African Parasite Response to Pyronaridine. Parasites & Vectors, 9, Article No. 77. https://doi.org/10.1186/s13071-016-1358-z
[9]  Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A.-C., Khim, N., et al. (2014) A Molecular Marker of Artemisinin-Resistant Plasmodium falciparum Malaria. Nature, 505, 50-55. https://doi.org/10.1038/nature12876
[10]  Collins, W.E. and Jeffery, G.M. (1996) Primaquine Resistance in Plasmodium vivax. The American Journal of Tropical Medicine and Hygiene, 55, 243-249. https://doi.org/10.4269/ajtmh.1996.55.243
[11]  Li, G.-D. (2020) Non-Carcinogenic Genotoxic Drugs Could Be Used to Prevent and Treat COVID-19. Open Access Library Journal, 7, e6536. https://doi.org/10.4236/oalib.1106536
[12]  Li, G.-D. (2022) Taking Paracetamol and Vitamin C or Ibuprofen and Vitamin C Every Day Could Be a Simple Way to Prevent COVID-19 Infection. Open Access Library Journal, 9, e9544. https://doi.org/10.4236/oalib.1109544
[13]  Velavan, T.P., Pallerla, S.R., Rüter, J., Augustin, Y., Kremsner, P.G., Krishna, S. and Meyer, C.G. (2021) Host Genetic Factors Determining COVID-19 Susceptibility and Severity. EBioMedicine, 72, Article ID: 103629. https://doi.org/10.1016/j.ebiom.2021.103629
[14]  Cappadona, C., Rimoldi, V., Paraboschi, E.M. and Asselta, R. (2023) Genetic Susceptibility to Severe COVID-19. Infection, Genetics and Evolution, 110, Article ID: 105426. https://doi.org/10.1016/j.meegid.2023.105426
[15]  Giri, A.K. (1993) The Genetic Toxicology of Paracetamol and Aspirin: A Review. Mutation Research/Reviews in Genetic Toxicology, 296, 199-210. https://doi.org/10.1016/0165-1110(93)90011-B
[16]  Nefi?, H. (2008) The Genotoxicity of Vitamin C in Vitro. Biomolecules and Biomedicine, 8, 141-146. https://doi.org/10.17305/bjbms.2008.2969
[17]  Li, G.-D. (2021) A Novel Strategy for Preventing and Treating Cancer: Alteration of Cancer-Associated Chromatin Configuration. Open Access Library Journal, 8, e7347. https://doi.org/10.4236/oalib.1107347
[18]  Chatterjee, T., Muhkopadhyay, A., Khan, K.A. and Giri, A.K. (1998) Comparative Mutagenic and Genotoxic Effects of Three Antimalarial Drugs, Chloroquine, Primaquine and Amodiaquine. Mutagenesis, 13, 619-624. https://doi.org/10.1093/mutage/13.6.619
[19]  El-Habit, O.H. and Al-Khamash, H.S. (2012) Testing the Cytotoxicity and Genotoxicity of the Antimalarial Drug Mefloquine. Journal of King Saud University-Science, 24, 277-284. https://doi.org/10.1016/j.jksus.2011.06.001
[20]  Aquino, I., Tsuboy, M.S., Marcarini, J.C., Mantovani, M.S., Perazzo, F.F. and Maistro, E.L. (2013) Genotoxic Evaluation of the Antimalarial Drugs Artemisinin and Artesunate in human HepG2 Cells and Effects on CASP3 and SOD1 Gene Expressions. Genetics and Molecular Research, 12, 2517-27. https://doi.org/10.4238/2013.July.24.6
[21]  Harishankar, M.K., Logeshwaran, S., Sujeevan, S., Aruljothi, K.N., Dannie, M.A. and Devi, A. (2015) Genotoxicity Evaluation of Metformin and Glimepiride by Micronucleus Assay in Exfoliated Urothelial Cells of Type 2 Diabetes Mellitus Patients. Food and Chemical Toxicology, 83, 146-150. https://doi.org/10.1016/j.fct.2015.06.013
[22]  de Sousa, F.A., de Morais, C.R., Vieira, J.S., Maranho, L.S., Machado, F.L., Pereira, S., et al. (2019) Genotoxicity and Carcinogenicity of Ivermectin and Amoxicillin in Vivo Systems. Environmental Toxicology and Pharmacology, 70, Article ID: 103196. https://doi.org/10.1016/j.etap.2019.103196
[23]  Ngai, T.W., Elfar, G.A., Yeo, P., Phua, N., Hor, J.H., Chen, S., et al. (2021) Nitro- Deficient Niclosamide Confers Reduced Genotoxicity and Retains Mitochondrial Uncoupling Activity for Cancer Therapy. International Journal of Molecular Sciences, 22, Article No. 10420. https://doi.org/10.3390/ijms221910420
[24]  Mennen, L., Walker, R., Bennetau-Pelissero, C. and Scalbert, A. (2005) Risks and Safety of Polyphenol Consumption. The American Journal of Clinical Nutrition, 81, 326-329. https://doi.org/10.1093/ajcn/81.1.326S
[25]  Reece, A.S. and Hulse, G.K. (2023) Clinical Epigenomic Explanation of the Epidemiology of Cannabinoid Genotoxicity Manifesting as Transgenerational Teratogenesis, Cancerogenesis and Aging Acceleration. International Journal of Environmental Research and Public Health, 20, Article No. 3360. https://doi.org/10.3390/ijerph20043360
[26]  Kotb, M.A. (2012) Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode. International Journal of Molecular Sciences, 13, 8882-8914. https://doi.org/10.3390/ijms13078882
[27]  Giri, A.K., Das, M., Reddy, V.G. and Pal, A.K. (1999) Mutagenic and Genotoxic Effects of Theophylline and Theobromine in Salmonella Assay and in Vivo Sister Chromatid Exchanges in Bone Marrow Cells of Mice. Mutation Research, 444, 17-23. https://doi.org/10.1016/S1383-5718(99)00093-5
[28]  Singh, B., Ryan, H., Kredo, T., Chaplin, M. and Fletcher, T. (2021) Chloroquine or Hydroxychloroquine for Prevention and Treatment of COVID-19. Cochrane Database of Systematic Reviews, No. 2, Article No. CD013587. https://doi.org/10.1002/14651858.CD013587.pub2
[29]  Bignardi, P.R., Vengrus, C.S., Aquino, B.M. and Cerci Neto, A. (2021) Use of Hydroxychloroquine and Chloroquine in Patients with COVID-19: A Meta-Analysis of Randomized Clinical Trials. Pathogens and Global Health, 115, 139-150. https://doi.org/10.1080/20477724.2021.1884807
[30]  Bramante, C.T., Huling, J.D., Tignanelli, C.J., Buse, J.B., Liebovitz, D.M., Nicklas, J.M., et al. (2022) Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for Covid-19. New England Journal of Medicine, 387, 599-610. https://doi.org/10.1056/NEJMoa2201662
[31]  Brevini, T., Maes, M., Webb, G.J., John, B.V., Fuchs, C.D., Buescher, G., et al. (2023) FXR Inhibition May Protect from SARS-CoV-2 Infection by Reducing ACE2. Nature, 615, 134-142. https://doi.org/10.1038/s41586-022-05594-0
[32]  Castro, R.E., Solá, S., Ma, X., Ramalho, R.M., Kren, B.T., Steer, C.J., et al. (2005) A Distinct Microarray Gene Expression Profile in Primary Rat Hepatocytes Incubated with Ursodeoxycholic Acid. Journal of Hepatology, 42, 897-906. https://doi.org/10.1016/j.jhep.2005.01.026
[33]  Dehghan, H., Oshaghi, M.A., Mosa-Kazemi, S.H., Abai, M.R., Rafie, F., Nateghpour, M., et al. (2018) Experimental Study on Plasmodium berghei, Anopheles Stephensi, and BALB/c Mouse System: Implications for Malaria Transmission Blocking Assays. Iranian Journal of Parasitology, 13, 549-559.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413