全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Piezoelectric Actuators Application and Hysteresis Modelling: A Brief Survey

DOI: 10.4236/oalib.1110482, PP. 1-36

Subject Areas: Electric Engineering

Keywords: Piezoelectric Applications, Piezoelectric Hysteresis Modelling, Piezoelectric Actuators

Full-Text   Cite this paper   Add to My Lib

Abstract

In modern life and production, there exists a global energy crisis, an increasing demand for advanced medical services, and a need to integrate and miniaturize industrial products. The applications based on conventional actuators struggle to cope with crises and growing demands due to their low resolution. To address the above issues, researchers have been working on and developing the excellent properties of piezoelectric materials since the discovery of the piezoelectric effect. Nowadays, piezoelectric actuators (PEAs), which are based on piezoelectric materials, have become widely utilized in energy harvesting, micro-electro-mechanical systems (MEMS), biomedicine and other fields. The control accuracy of PEAs in applications is limited by the inherent hysteresis nonlinearity, which poses a challenge to their applications. Researchers are working on PEAs and their hysteresis models to better serve humans with PEAs. This paper reviews typical applications and classifications of PEAs, typical hysteresis models, and classifications. At the end of the paper, we summarize the steps of the selective hysteresis modelling of PEAs and indicate the critical points of the hysteresis modelling and future research directions. The present paper provides a comprehensive review of classical hysteresis models and PEAs, which is expected to benefit researchers in the field of piezoelectric applications and efficient hysteresis modelling.

Cite this paper

Yang, Y. (2023). Piezoelectric Actuators Application and Hysteresis Modelling: A Brief Survey. Open Access Library Journal, 10, e482. doi: http://dx.doi.org/10.4236/oalib.1110482.

References

[1]  Sezer, N. and Koç, M. (2021) A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting. Nano Energy, 80, Article ID: 105567. https://doi.org/10.1016/j.nanoen.2020.105567
[2]  Wu, Y., Ma, Y., Zheng, H. and Ramakrishna, S. (2021) Piezoelectric Materials for Flexible and Wearable Electronics: A Review. Materials & Design, 211, Article ID: 110164. https://doi.org/10.1016/j.matdes.2021.110164
[3]  Ding, B., Zhao, J. and Li, Y. (2021) Design of A Spatial Constant-Force End-Effector for Polishing/Deburring Operations. The International Journal of Advanced Manufacturing Technology, 116, 3507-3515. https://doi.org/10.1007/s00170-021-07579-1
[4]  Jin, H., et al. (2022) Review on Piezoelectric Actuators Based on High Performance Piezoelectric Materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69, 3057-3069. https://doi.org/10.1109/TUFFC.2022.3175853
[5]  Xing, J., Ning, C., Liu, Y. and Howard, I. (2022) Piezoelectric Inertial Robot for Operating in Small Pipelines Based on Stick-Slip Mechanism: Modeling and Experiment. Frontiers of Mechanical Engineering, 17, Article No. 41. https://doi.org/10.1007/s11465-022-0697-z
[6]  Curie, J. and Curie, P. (1880) Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de minéralogie, 3, 90-93. https://doi.org/10.3406/bulmi.1880.1564
[7]  Tian, X., Liu, Y., Deng, J., Wang, L. and Chen, W. (2020) A Review on Piezoelectric Ultrasonic Motors for the Past Decade: Classification, Operating Principle, Performance, and Future Work Perspectives. Sensors and Actuators A: Physical, 306, Article ID: 111971. https://doi.org/10.1016/j.sna.2020.111971
[8]  Safaei, M., Sodano, H.A. and Anton, S.R. (2019) A Review of Energy Harvesting Using Piezoelectric Materials: State-of-the-Art a Decade Later (2008-2018). Smart Materials and Structures, 28, Article ID: 113001. https://doi.org/10.1088/1361-665X/ab36e4
[9]  Aabid, A., et al. (2021) A Systematic Review of Piezoelectric Materials and Energy Harvesters for Industrial Applications. Sensors, 21, Article No. 4145. https://doi.org/10.3390/s21124145
[10]  Yang, Z., Zhou, S., Zu, J. and Inman, D. (2018) High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule, 2, 642-697. https://doi.org/10.1016/j.joule.2018.03.011
[11]  Le, A.T., Ahmadipour, M. and Pung, S.-Y. (2020) A Review on ZnO-Based Piezoelectric Nanogenerators: Synthesis, Characterization Techniques, Performance Enhancement and Applications. Journal of Alloys and Compounds, 844, Article ID: 156172. https://doi.org/10.1016/j.jallcom.2020.156172
[12]  Soin, N., et al. (2016) High Performance Triboelectric Nanogenerators Based on Phase-Inversion Piezoelectric Membranes of Poly (Vinylidene Fluoride)-Zinc Stannate (PVDF-ZnSnO3) and Polyamide-6 (PA6). Nano Energy, 30, 470-480. https://doi.org/10.1016/j.nanoen.2016.10.040
[13]  Sarker, M.R., Julai, S., Sabri, M.F.M., Said, S.M., Islam, M.M. and Tahir, M. (2019) Review of Piezoelectric Energy Harvesting System and Application of Optimization Techniques to Enhance the Performance of the Harvesting System. Sensors and Actuators A: Physical, 300, Article ID: 111634. https://doi.org/10.1016/j.sna.2019.111634
[14]  Lu, C., et al. (2022) Wind Energy Harvester Using Piezoelectric Materials. Review of Scientific Instruments, 93, Article ID: 031502. https://doi.org/10.1063/5.0065462
[15]  Fakhri, P., et al. (2019) Flexible Hybrid Structure Piezoelectric Nanogenerator Based on ZnO nanorod/PVDF Nanofibers with Improved Output. RSC Advances, 9, 10117-10123. https://doi.org/10.1039/C8RA10315A
[16]  Deng, W., et al. (2019) Cowpea-Structured PVDF/ZnO Nanofibers Based Flexible Self-Powered Piezoelectric Bending Motion Sensor towards Remote Control of Gestures. Nano Energy, 55, 516-525. https://doi.org/10.1016/j.nanoen.2018.10.049
[17]  Singh, A., Monga, S., Sharma, N., Sreenivas, K. and Katiyar, R.S. (2022) Ferroelectric, Piezoelectric Mechanism and Applications. Journal of Asian Ceramic Societies, 10, 275-291. https://doi.org/10.1080/21870764.2022.2075618
[18]  Pop, F., Herrera, B. and Rinaldi, M. (2022) Lithium Niobate Piezoelectric Micromachined Ultrasonic Transducers for High Data-Rate Intrabody Communication. Nature Communications, 13, Article No. 1782. https://doi.org/10.1038/s41467-022-29355-9
[19]  Chen, W., Jia, W., Xiao, Y., Feng, Z. and Wu, G. (2021) A Temperature-Stable and Low Impedance Piezoelectric MEMS Resonator for Drop-In Replacement of Quartz Crystals. IEEE Electron Device Letters, 42, 1382-1385. https://doi.org/10.1109/LED.2021.3094319
[20]  Pulskamp, J.S., et al. (2012) Piezoelectric PZT MEMS Technologies for Small-Scale Robotics and RF Applications. MRS Bulletin, 37, 1062-1070. https://doi.org/10.1557/mrs.2012.269
[21]  Wang, P., et al. (2021) Ultrasmall Barium Titanate Nanoparticles for Highly Efficient Hypoxic Tumor Therapy via Ultrasound Triggered Piezocatalysis and Water Splitting. ACS Nano, 15, 11326-11340. https://doi.org/10.1021/acsnano.1c00616
[22]  Tian, J., Jiang, F., Zeng, Q., PourhosseiniAsl, M., Han, C. and Ren, K. (2023) Biocompatible Piezoelectric Polymer Poly (Lactic Acid)-Based Stethoscope for Wearable Health Monitoring Devices. IEEE Sensors Journal, 23, 6264-6271. https://doi.org/10.1109/JSEN.2023.3240120
[23]  Choi, N., et al. (2022) Fabrication and Simulation of a Piezoelectric PIN-PMN-PT Thin Film for Ultrahigh-Frequency Ultrasonic Transducers. Sensors and Actuators A: Physical, 347, Article ID: 113936. https://doi.org/10.1016/j.sna.2022.113936
[24]  Li, Z., et al. (2022) High-Frequency Self-Focusing Ultrasonic Transducer with Piezoelectric Metamaterial. IEEE Electron Device Letters, 43, 946-949. https://doi.org/10.1109/LED.2022.3170613
[25]  Guo, S., Duan, X., Xie, M., Aw, K.C. and Xue, Q. (2020) Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review. Micromachines, 11, Article No. 1076. https://doi.org/10.3390/mi11121076
[26]  Yamashita, Y., Karaki, T., Lee, H.-Y., Wan, H., Kim, H.-P. and Jiang, X. (2022) A Review of Lead Perovskite Piezoelectric Single Crystals and Their Medical Transducers Application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69, 3048-3056. https://doi.org/10.1109/TUFFC.2022.3160526
[27]  Tian, F., Liu, Y., Ma, R., Li, F., Xu, Z. and Yang, Y. (2021) Properties of PMN-PT Single Crystal Piezoelectric Material and Its Application in Underwater Acoustic Transducer. Applied Acoustics, 175, Article ID: 107827. https://doi.org/10.1016/j.apacoust.2020.107827
[28]  Wang, X., Huan, Y., Ji, S., Zhu, Y., Wei, T. and Cheng, Z. (2022) Ultra-High Piezoelectric Performance by Rational Tuning of HeterovalentIon Doping in Lead-Free Piezoelectric Ceramics. Nano Energy, 101, Article ID: 107580. https://doi.org/10.1016/j.nanoen.2022.107580
[29]  Yin, J., Chen, S., Wong, V.-K. and Yao, K. (2022)Thermal Sprayed Lead-Free Piezoelectric Ceramic Coatings for Ultrasonic Structural Health Monitoring. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69, 3070-3080. https://doi.org/10.1109/TUFFC.2022.3176488
[30]  Smith, M. and Kar-Narayan, S. (2022) Piezoelectric Polymers: Theory, Challenges and Opportunities. International Materials Reviews, 67, 65-88. https://doi.org/10.1080/09506608.2021.1915935
[31]  Habib, M., Lantgios, I. and Hornbostel, K. (2022) A Review of Ceramic, Polymer and Composite Piezoelectric Materials. Journal of Physics D: Applied Physics, 55, Article ID: 423002. https://doi.org/10.1088/1361-6463/ac8687
[32]  Dong, K., Peng, X. and Wang, Z.L. (2020) Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 32, Article ID: 1902549. https://doi.org/10.1002/adma.201902549
[33]  Liu, L., et al. (2020) Nanowrinkle-Patterned Flexible Woven Triboelectric Nanogenerator toward Self-Powered Wearable Electronics. Nano Energy, 73, Article ID: 104797. https://doi.org/10.1016/j.nanoen.2020.104797
[34]  Wang, J., et al. (2020) Enhancement of Low-Speed Piezoelectric Wind Energy Harvesting by Bluff Body Shapes: Spindle-Like and Butterfly-Like Cross-Sections. Aerospace Science and Technology, 103, Article ID: 105898. https://doi.org/10.1016/j.ast.2020.105898
[35]  Edison, T.A. (1888) The Perfected Phonograph. The North American Review, 146, 641-650.
[36]  Rashid, A., Zubair, U., Ashraf, M., Javid, A., Abid, H.A. and Akram, S. (2023) Flexible Piezoelectric Coatings on Textiles for Energy Harvesting and Autonomous Sensing Applications: A Review. Journal of Coatings Technology and Research, 20, 141-172. https://doi.org/10.1007/s11998-022-00690-2
[37]  Palmer, S., et al. (2022) High Bandwidth Frequency Modulation of an External Cavity Diode Laser Using an Intracavity Lithium Niobate Electro-Optic Modulator as Output Coupler. APL Photonics, 7, Article ID: 086106. https://doi.org/10.1063/5.0097880
[38]  Xu, L., Liu, N., Zhou, S., Zhang, L. and Li, J. (2020) Dual-Spectroscopy Technique Based on Quartz Crystal Tuning Fork Detector. Sensors and Actuators A: Physical, 304, Article ID: 111873. https://doi.org/10.1016/j.sna.2020.111873
[39]  Choi, J., et al. (2017) Thin-Film Piezoelectric and High-Aspect Ratio Polymer Leg Mechanisms for Millimeter-Scale Robotics. International Journal of Intelligent Robotics and Applications, 1, 180-194. https://doi.org/10.1007/s41315-017-0017-7
[40]  Ling, J., Wang, K., Wang, Z., Huang, H. and Zhang, G. (2020) Enhanced Piezoelectric-Induced Catalysis of SrTiO3 Nanocrystal with Well-Defined Facets under Ultrasonic Vibration. Ultrasonics Sonochemistry, 61, Article ID: 104819. https://doi.org/10.1016/j.ultsonch.2019.104819
[41]  Chen, D., et al. (2021) Recent Development and Perspectives of Optimization Design Methods for Piezoelectric Ultrasonic Transducers. Micromachines, 12, Article No. 779. https://doi.org/10.3390/mi12070779
[42]  Wan, L.F., Nishimatsu, T. and Beckman, S. (2012) The Structural, Dielectric, Elastic, and Piezoelectric Properties of KNbO3 from First-Principles Methods. Journal of Applied Physics, 111, Article ID: 104107. https://doi.org/10.1063/1.4712052
[43]  Dong, L., et al. (2020) Cardiac Energy Harvesting and Sensing Based on Piezoelectric and Triboelectric Designs. Nano Energy, 76, Article ID: 105076. https://doi.org/10.1016/j.nanoen.2020.105076
[44]  Sakamiya, M., Fang, Y., Mo, X., Shen, J. and Zhang, T. (2020) A Heart-on-a-Chip Platform for Online Monitoring of Contractile Behavior via Digital Image Processing and Piezoelectric Sensing Technique. Medical Engineering & Physics, 75, 36-44. https://doi.org/10.1016/j.medengphy.2019.10.001
[45]  Park, S., et al. (2018) PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants. Trends in Hearing, 22, Article ID: 2331216518774450. https://doi.org/10.1177/2331216518774450
[46]  Guo, Z., et al. (2020) Self-Powered Sound Detection and Recognition Sensors Based on Flexible Polyvinylidene Fluoride-Trifluoroethylene Films Enhanced by in-Situ Po-larization. Sensors and Actuators A: Physical, 306, Article ID: 111970. https://doi.org/10.1016/j.sna.2020.111970
[47]  Yang, Z., Chen, C., Chen, W., Chen, H. and Liu, Z. (2022) Improved Sliding Mode Dynamic Matrix Control Strategy: Application on Spindle Loading and Precision Measuring Device Based on Piezoelectric Actuator. Mechanical Systems and Signal Processing, 167, Article ID: 108543. https://doi.org/10.1016/j.ymssp.2021.108543
[48]  Al Janaideh, M. and Rakotondrabe, M. (2021) Precision Motion Control of a Piezoelectric Cantilever Positioning System with Rate-Dependent Hysteresis Nonlinearities. Nonlinear Dynamics, 104, 3385-3405. https://doi.org/10.1007/s11071-021-06460-w
[49]  Zhang, S.-Q., Zhao, G.-Z., Rao, M.N., Schmidt, R. and Yu, Y.-J. (2019) A Review on Modeling Techniques of Piezoelectric Integrated Plates and Shells. Journal of Intelligent Material Systems and Structures, 30, 1133-1147. https://doi.org/10.1177/1045389X19836169
[50]  Du, S., Jia, Y., Zhao, C., Amaratunga, G.A. and Seshia, A.A. (2019) A Nail-Size Piezoelectric Energy Harvesting System Integrating a MEMS Transducer and a CMOS SSHI Circuit. IEEE Sensors Journal, 20, 277-285. https://doi.org/10.1109/JSEN.2019.2941180
[51]  Ding, Y., Cai, Y. and Li, Y. (2022) Continuously Adjustable Micro Valve Based on a Piezoelectric Actuator for High-Precision Flow Rate Control. Electronics, 11, Article No. 1689. https://doi.org/10.3390/electronics11111689
[52]  Mohith, S., Upadhya, A.R., Navin, K.P., Kulkarni, S. and Rao, M. (2020) Recent Trends in Piezoelectric Actuators for Precision Motion and Their Applications: A Review. Smart Materials and Structures, 30, Article ID: 013002. https://doi.org/10.1088/1361-665X/abc6b9
[53]  Kim, B., Washington, G.N. and Yoon, H.-S. (2014) Control and Hysteresis Reduction in Prestressed Curved Unimorph Actuators Using Model Predictive Control. Journal of Intelligent Material Systems and Structures, 25, 290-307. https://doi.org/10.1177/1045389X13493353
[54]  Haller, D., et al. (2011) Piezo-Polymer-Composite Unimorph Actuators for Active Cancellation of Flow Instabilities across Airfoils. Journal of Intelligent Material Systems and Structures, 22, 461-474. https://doi.org/10.1177/1045389X10395794
[55]  Ovezea, D., et al. (2022) Exeprimental Testing of a Tremor Compensation System with Bimorph Piezoceramic Actuators Using Optical Methods. International Journal of Mechatronics and Applied Mechanics, No. 11, 31-41.
[56]  van den Ende, D., Bos, B. and Groen, W. (2009) Non-Linear Electromechanical Behaviour of Piezoelectric Bimorph Actuators: Influence on Performance and Lifetime. Journal of Electroceramics, 22, 185-191. https://doi.org/10.1007/s10832-008-9459-5
[57]  Habineza, D., Rakotondrabe, M. and Gorrec, Y.L. (2016) Characterization, Modeling and H∞ Control of n-DOF Piezoelectric Actuators: Application to a 3-DOF Precise Positioner. Asian Journal of Control, 18, 1239-1258. https://doi.org/10.1002/asjc.1224
[58]  Kuiper, S. and Schitter, G. (2010) Active Damping of a Piezoelectric Tube Scanner Using Self-Sensing Piezo Actuation. Mechatronics, 20, 656-665. https://doi.org/10.1016/j.mechatronics.2010.07.003
[59]  Li, W., Yang, Z., Li, K. and Wang, W. (2021) Hybrid Feedback PID-FxLMS Algorithm for Active Vibration Control of Cantilever Beam with Piezoelectric Stack Actuator. Journal of Sound and Vibration, 509, Article ID: 116243. https://doi.org/10.1016/j.jsv.2021.116243
[60]  Wang, S., Rong, W., Wang, L., Xie, H., Sun, L. and Mills, J.K. (2019) A Survey of Piezoelectric Actuators with Long Working Stroke in Recent Years: Classifications, Principles, Connections and Distinctions. Mechanical Systems and Signal Processing, 123, 591-605. https://doi.org/10.1016/j.ymssp.2019.01.033
[61]  Koyuncu, A. (2022) Design, Modelling and Analysis of a Novel Implantable bone Conduction Hearing Aid with a Piezoelectric Actuator. Middle East Technical University, Ankara.
[62]  Ding, B., Li, X. and Li, Y. (2022) Configuration Design and Experimental Verification of a Variable Constant-Force Compliant Mechanism. Robotica, 40, 3463-3475. https://doi.org/10.1017/S0263574722000340
[63]  Sun, W., et al. (2022) An Impact Inertial Piezoelectric Actuator Designed by Means of the Asymmetric Friction. IEEE Transactions on Industrial Electronics, 70, 699-708. https://doi.org/10.1109/TIE.2022.3153807
[64]  Ding, B., Yang, Z.-X., Zhang, G. and Xiao, X. (2017) Optimum Design and Analysis of Flexure Based Mechanism for Non-Circular Diamond Turning Operation. Advances in Mechanical Engineering, 9, Article ID: 1687814017743353. https://doi.org/10.1177/1687814017743353
[65]  Liu, Y., Deng, J. and Su, Q. (2018) Review on Multi-Degree-of-Freedom Piezoelectric Motion Stage. IEEE Access, 6, 59986-60004. https://doi.org/10.1109/ACCESS.2018.2875940
[66]  Sun, X., Chen, W., Zhang, J., Zhou, R. and Chen, W. (2015) A Novel Piezo-Driven Linear-Rotary Inchworm Actuator. Sensors and Actuators A: Physical, 224, 78-86. https://doi.org/10.1016/j.sna.2015.01.024
[67]  Ding, B., Li, Y., Xiao, X., Tang, Y. and Li, B. (2017) Design and Analysis of a 3-DOF Planar Micromanipulation Stage with Large Rotational Displacement for Micromanipulation System. Mechanical Sciences, 18, 117-126. https://doi.org/10.5194/ms-8-117-2017
[68]  Wang, L., Chen, W., Liu, J., Deng, J. and Liu, Y. (2019) A Review of Recent Studies on Non-Resonant Piezoelectric Actuators. Mechanical Systems and Signal Processing, 133, Article ID: 106254. https://doi.org/10.1016/j.ymssp.2019.106254
[69]  Ding, B., Li, X. and Li, Y. (2021) FEA-Based Optimization and Experimental Verification of a Typical Flexure-Based Constant Force Module. Sensors and Actuators A: Physical, 332, Article ID: 113083. https://doi.org/10.1016/j.sna.2021.113083
[70]  Li, J., Huang, H. and Morita, T. (2019) Stepping Piezoelectric Actuators with Large Working Stroke for Nano-Positioning Systems: A Review. Sensors and Actuators A: Physical, 292, 39-51. https://doi.org/10.1016/j.sna.2019.04.006
[71]  Yang, C., Wang, Y. and Fan, W. (2022) Long Stroke Design of Piezoelectric Walking Actuator for Wafer Probe Station. Micromachines, 13, Article No. 412. https://doi.org/10.3390/mi13030412
[72]  Qi, H.Y. (2019) Influence of Waveform Symmetry on Output Performance of Piezoelectric Inertia Actuator Controlled by Composite Method. IOP Conference Series: Materials Science and Engineering, 565, Article ID: 012014. https://doi.org/10.1088/1757-899X/565/1/012014
[73]  Shao, Y., Xu, M., Shao, S. and Song, S. (2020) Effective Dynamical Model for Piezoelectric Stick-Slip Actuators in Bi-Directional Motion. Mechanical Systems and Signal Processing, 145, Article ID: 106964. https://doi.org/10.1016/j.ymssp.2020.106964
[74]  Wang, X., Zhu, L. and Huang, H. (2020) A Dynamic Model of Stick-Slip Piezoelectric Actuators Considering the Deformation of Overall System. IEEE Transactions on Industrial Electronics, 68, 11266-11275. https://doi.org/10.1109/TIE.2020.3032922
[75]  Bai, D., Li, Y., Quan, Q., Tang, D. and Deng, Z. (2023) Development of a Rotary-Percussive Ultrasonic Drill Using a Bolt-Clamped Type Piezoelectric Actuator. Advances in Space Research, 71, 5360-5368. https://doi.org/10.1016/j.asr.2023.02.008
[76]  Suryawanshi, P. and Arunkumar, G. (2022) A Review on Design and Development of Multi Degree of Freedom Compliant Mechanism. AIP Conference Proceedings, 2460, Article ID: 080005. https://doi.org/10.1063/5.0095660
[77]  Wei, F., Wang, X., Dong, J., Guo, K. and Sui, Y. (2023) Development of a Three-Degree-of-Freedom Piezoelectric Actuator. Review of Scientific Instruments, 94, Article ID: 025001. https://doi.org/10.1063/5.0114030
[78]  Ceponis, A., Jūrenas, V. and Mazeika, D. (2022) Development of 5-DOF Piezoelectric Actuator for Planar—Angular Positioning. Applied Sciences, 12, Article No. 1033. https://doi.org/10.3390/app12031033
[79]  Gao, X., et al. (2020) Piezoelectric Actuators and Motors: Materials, Designs, and Applications. Advanced Materials Technologies, 5, Article ID: 1900716. https://doi.org/10.1002/admt.201900716
[80]  Wang, G., Yao, X., Cui, J., Yan, Y., Dai, J. and Zhao, W. (2020) A Novel Piezoelectric Hysteresis Modeling Method Combining LSTM and NARX Neural Networks. Modern Physics Letters B, 34, Article ID: 2050306. https://doi.org/10.1142/S0217984920503066
[81]  Gan, J. and Zhang, X. (2019) A Review of Nonlinear Hysteresis Modeling and Control of Piezoelectric Actuators. AIP Advances, 9, Article ID: 040702. https://doi.org/10.1063/1.5093000
[82]  Mayergoyz, I.D. (2003) Mathematical Models of Hysteresis and Their Applications. Academic Press, Cambridge, Massachusetts.
[83]  Smith, R.C. (2005) Smart Material Systems: Model Development. In: Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9780898717471
[84]  Ding, B.X. and Li, Y.M. (2018) Hysteresis Compensation and Sliding Mode Control with Perturbation Estimation for Piezoelectric Actuators. Micromachines, 9, Article No. 241. https://doi.org/10.3390/mi9050241
[85]  Nie, L., Luo, Y., Gao, W. and Zhou, M. (2022) Rate-Dependent Asymmetric Hysteresis Modeling and Robust Adaptive Trajectory Tracking for Piezoelectric Micropositioning Stages. Nonlinear Dynamics, 108, 2023-2043. https://doi.org/10.1007/s11071-022-07324-7
[86]  Xu, M., Zhang, J.-Q., Rong, C. and Ni, J. (2020) Multislope PI Modeling and Feedforward Compensation for Piezoelectric Beam. Mathematical Problems in Engineering, 2020, Article ID: 6404971. https://doi.org/10.1155/2020/6404971
[87]  Preisach, F. (1935) über die magnetische Nachwirkung. Zeitschrift für Physik, 94, 277-302. https://doi.org/10.1007/BF01349418
[88]  Krasnosel’skii, M.A., and Pokrovskii, A.V. (2012) Systems with Hysteresis. Springer Science & Business Media, Berlin.
[89]  Mayergoyz, I. (1986) Mathematical Models of Hysteresis. IEEE Transactions on Magnetics, 22, 603-608. https://doi.org/10.1109/TMAG.1986.1064347
[90]  Wawrzala, P. (2013) Application of a Preisach Hysteresis Model to the Evaluation of PMN-PT Ceramics Properties. Archives of Metallurgy and Materials, 58, 1347-1350. https://doi.org/10.2478/amm-2013-0172
[91]  Yang, L., Ding, B.X., Liao, W.H. and Li, Y.M. (2022) Identification of Preisach Model Parameters Based on an Improved Particle Swarm Optimization Method for Piezoelectric Actuators in Micro-Manufacturing Stages. Micromachines, 13, Article No. 698. https://doi.org/10.3390/mi13050698
[92]  Mayergoyz, I.D. and Friedman, G. (1988) Generalized Preisach Model of Hysteresis. IEEE Transactions on Magnetics, 24, 212-217. https://doi.org/10.1109/20.43892
[93]  Liu, V.-T. and Wing, H.-Y. (2022) Classical Preisach Model Based on Polynomial Approximation and Applied to Micro-Piezoelectric Actuators. Symmetry, 14, Article No. 1008. https://doi.org/10.3390/sym14051008
[94]  Szabó, Z. (2006) Preisach Functions Leading to Closed Form Permeability. Physica B: Condensed Matter, 372, 61-67. https://doi.org/10.1016/j.physb.2005.10.020
[95]  Mayergoyz, I.D. (1991) The Classical Preisach Model of Hysteresis. In: Mathematical Models of Hysteresis, Springer, New York, 1-63. https://doi.org/10.1007/978-1-4612-3028-1_1
[96]  Banks, H.T., Kurdila, A.J. and Webb, G. (1997) Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation. Mathematical Problems in Engineering, 3, 287-328. https://doi.org/10.1155/S1024123X97000586
[97]  Vojta, G. (2010) M. A. Krasnosel'skil, A. V. Pokrovskii. Systems with Hysteresis. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo 1989, XVIII u. 410 S., 81 figures, DM 148.–, ISBN 3-540-15543-0. Crystal Research and Technology, 24, K142. https://doi.org/10.1002/crat.2170240828
[98]  Xu, R., Tian, D. and Wang, Z. (2020) Adaptive Tracking Control for the Piezoelectric Actuated Stage Using the Krasnosel’skii-Pokrovskii Operator. Micromachines, 11, Article No. 537. https://doi.org/10.3390/mi11050537
[99]  Li, Z., Shan, J. and Gabbert, U. (2018) Inverse Compensation of Hysteresis Using Krasnoselskii-Pokrovskii Model. IEEE/ASME Transactions on Mechatronics, 23, 966-971. https://doi.org/10.1109/TMECH.2018.2805761
[100]  Galinaitis, W.S. (1999) Two Methods for Modeling Scalar Hysteresis and Their Use in Controlling Actuators with Hysteresis. Doctoral Dissertation, Virginia Tech, Blacksburg.
[101]  Amato, M., Ghezzi, L., Piegari, L. and Toscani, S. (2022) Definition and Identification of an Improved Preisach Model for Magnetic Hysteresis Based on the KP Operator. 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, 16-19 May 2022, 1-6. https://doi.org/10.1109/I2MTC48687.2022.9806703
[102]  Egusa, S., et al. (2010) Multimaterial Piezoelectric Fibres. Nature Materials, 9, 643-648. https://doi.org/10.1038/nmat2792
[103]  Qin, Y., Xu, Y., Shen, C. and Han, J. (2022) High-Precision Displacement and Force Hybrid Modeling of Pneumatic Artificial Muscle Using 3D PI-NARMAX Model. Actuators, 11, Article No. 51. https://doi.org/10.3390/act11020051
[104]  Macki, J.W., Nistri, P. and Zecca, P. (1993) Mathematical Models for Hysteresis. SIAM Review, 35, 94-123. https://doi.org/10.1137/1035005
[105]  Kuhnen, K. and Janocha, H. (2001) Inverse Feedforward Controller for Complex Hysteretic Nonlinearities in Smart-Material Systems. Control and Intelligent Systems, 29, 74-83.
[106]  Krikelis, K., van Berkel, K. and Schoukens, M. (2021) Artificial Neural Network Hysteresis Operators for the Identification of Hammerstein Hysteretic Systems. IFAC-PapersOnLine, 54, 702-707. https://doi.org/10.1016/j.ifacol.2021.08.443
[107]  Al-Bender, F., Symens, W., Swevers, J. and Van Brussel, H. (2004) Theoretical Analysis of the Dynamic Behavior of Hysteresis Elements in Mechanical Systems. International Journal of Non-Linear Mechanics, 39, 1721-1735. https://doi.org/10.1016/j.ijnonlinmec.2004.04.005
[108]  Li, S., Yang, X., Li, Y. and Liu, N. (2019) Research on Modelling of Piezoelectric Micro-Positioning Stage Based on PI Hysteresis Model. The Journal of Engineering, 2019, 437-441. https://doi.org/10.1049/joe.2018.8978
[109]  Hassani, V., Tjahjowidodo, T. and Do, T.N. (2014) A Survey on Hysteresis Modeling, Identification and Control. Mechanical Systems and Signal Processing, 49, 209-233. https://doi.org/10.1016/j.ymssp.2014.04.012
[110]  Lining, S., Changhai, R., Weibin, R., Liguo, C. and Minxiu, K. (2004) Tracking Control of Piezoelectric Actuator Based on a New Mathematical Model. Journal of Micromechanics and Microengineering, 14, Article No. 1439. https://doi.org/10.1088/0960-1317/14/11/001
[111]  Gan, J. and Zhang, X. (2014) A Novel Mathematical Piezoelectric Hysteresis Model Based on Polynomial. In: Zhang, X., Liu, H., Chen, Z. and Wang, N., Eds., Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science, Vol. 8918, Springer, Cham, 354-365. https://doi.org/10.1007/978-3-319-13963-0_36
[112]  Bashash, S. and Jalili, N. (2008) A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators. Journal of Dynamic Systems, Measurement, and Control, 130, Article ID: 031008. https://doi.org/10.1115/1.2907372
[113]  Yang, C., Verbeek, N., Xia, F., Wang, Y. and Youcef-Toumi, K. (2020) Modeling and Control of Piezoelectric Hysteresis: A Polynomial-Based Fractional Order Disturbance Compensation Approach. IEEE Transactions on Industrial Electronics, 68, 3348-3358. https://doi.org/10.1109/TIE.2020.2977567
[114]  Ikhouane, F., Mañosa, V. and Rodellar, J. (2005) Adaptive Control of a Hysteretic Structural System. Automatica, 41, 225-231. https://doi.org/10.1016/j.automatica.2004.08.018
[115]  Bouc, R. (1967) Forced Vibrations of Mechanical Systems with Hysteresis. Proceedings of the 4th Conference on Nonlinear Oscillations, Prague, 5-9 September 1967.
[116]  Wen, Y.-K. (1976) Method for Random Vibration of Hysteretic Systems. Journal of the Engineering Mechanics Division, 102, 249-263. https://doi.org/10.1061/JMCEA3.0002106
[117]  Coleman, B.D. and Hodgdon, M.L. (1987) On a Class of Constitutive Relations for Ferromagnetic Hysteresis. Archive for Rational Mechanics and Analysis, 99, 375-396. https://doi.org/10.1007/BF00282052
[118]  Banning, R., de Koning, W.L., Adriaens, H.J. and Koops, R.K. (2001) State-Space Analysis and Identification for a Class of Hysteretic Systems. Automatica, 37, 1883-1892. https://doi.org/10.1016/S0005-1098(01)00157-1
[119]  Su, C.-Y., Stepanenko, Y., Svoboda, J. and Leung, T.P. (2000) Robust Adaptive Control of a Class of Nonlinear Systems with Unknown Backlash-Like Hysteresis. IEEE Transactions on Automatic Control, 45, 2427-2432.
[120]  Dahl, P.R. (1968) A Solid Friction Model. The Aerospace Corporation, 18, 1-24.
[121]  Zhang, B., Yuan, X., Zeng, Y., Lang, L., Liang, H. and Zhang, Y. (2022) Dahl Friction Model for Driving Characteristics of V-Shape Linear Ultrasonic Motors. Micromachines, 13, Article No. 1407. https://doi.org/10.3390/mi13091407
[122]  Xu, Q. and Li, Y. (2010) Dahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator with Piezoelectric Actuation. Journal of Dynamic Systems, Measurement, and Control, 132, Article ID: 041011. https://doi.org/10.1115/1.4001712
[123]  Ahmad, I., Ali, M.A. and Ko, W. (2020) Robust μ-Synthesis with Dahl Model Based Feedforward Compensator Design for Piezo-Actuated Micropositioning Stage. IEEE Access, 8, 141799-141813. https://doi.org/10.1109/ACCESS.2020.3013570
[124]  Jiles, D.C. and Atherton, D.L. (1986) Theory of Ferromagnetic Hysteresis. Journal of Magnetism and Magnetic Materials, 61, 48-60. https://doi.org/10.1016/0304-8853(86)90066-1
[125]  Smith, R.C. and Ounaies, Z. (2000) A Domain Wall Model for Hysteresis in Piezoelectric Materials. Journal of Intelligent Material Systems and Structures, 11, 62-79. https://doi.org/10.1106/HPHJ-UJ4D-E9D0-2MDY
[126]  Rossi, C., Colorado, J., Coral, W. and Barrientos, A. (2011) Bending Continuous Structures with SMAs: A Novel Robotic Fish Design. Bioinspiration & Biomimetics, 6, Article ID: 045005. https://doi.org/10.1088/1748-3182/6/4/045005
[127]  Ikuta, K., Tsukamoto, M. and Hirose, S. (1991) Mathematical Model and Experimental Verification of Shape Memory Alloy for Designing Micro Actuator. Proceedings of the 1991 IEEE Micro Electro Mechanical Systems, Nara, 30 January-2 February 1991, 103-108.
[128]  Vasanth, P., Kamalakannan, G.M. and Shivaraj, C.S. (2019) Study of Different Modelling Techniques of SMA Actuator and Their Validation through Simulation. In: Sridhar, V., Padma, M. and Rao, K., Eds., Emerging Research in Electronics, Computer Science and Technology. Lecture Notes in Electrical Engineering, Vol. 545, Springer, Singapore, 1211-1228. https://doi.org/10.1007/978-981-13-5802-9_104
[129]  Önder, E.T., Sümer, B. and Baslamisli, S.Ç. (2023) Estimation of Heat Transfer Model Parameters by Using Recursive Least Square (RLS) Method for a Shape Memory Alloy Wire. Journal of Intelligent Material Systems and Structures, 34, 379-392. https://doi.org/10.1177/1045389X221105892
[130]  Liu, Y., Liu, H., Wu, H. and Zou, D. (2016) Modelling and Compensation of Hysteresis in Piezoelectric Actuators Based on Maxwell Approach. Electronics Letters, 52, 188-190. https://doi.org/10.1049/el.2015.3138
[131]  Chen, J., Shang, H., Xia, D., Wang, S., Peng, T. and Zang, C. (2023) A Modified Vector Jiles-Atherton Hysteresis Model for the Design of Hysteresis Devices. IEEE Transactions on Energy Conversion. https://doi.org/10.1109/TEC.2023.3243101
[132]  Li, Y., et al. (2023) Modified Jiles-Atherton Model for Dynamic Magnetization in X-Space Magnetic Particle Imaging. IEEE Transactions on Biomedical Engineering, 70, 2035-2045. https://doi.org/10.1109/TBME.2023.3234256
[133]  Benabou, A., Leite, J.V., Clenet, S., Simão, C. and Sadowski, N. (2008) Minor Loops Modelling with a Modified Jiles-Atherton Model and Comparison with the Preisach Model. Journal of Magnetism and Magnetic Materials, 320, e1034-e1038. https://doi.org/10.1016/j.jmmm.2008.04.092
[134]  Ru, C., Chen, L., Shao, B., Rong, W. and Sun, L. (2009) A Hysteresis Compensation Method of Piezoelectric Actuator: Model, Identification and Control. Control Engineering Practice, 17, 1107-1114. https://doi.org/10.1016/j.conengprac.2009.04.013
[135]  Chuntao, L. and Yonghong, T. (2004) A Neural Networks Model for Hysteresis Nonlinearity. Sensors and Actuators A: Physical, 112, 49-54. https://doi.org/10.1016/j.sna.2003.11.016
[136]  Dong, R., Tan, Y., Hui, C. and Xie, Y. (2008) A Neural Networks Based Model for Rate-Dependent Hysteresis for Piezoceramic Actuators. Sensors and Actuators A: Physical, 143, 370-376. https://doi.org/10.1016/j.sna.2007.11.023
[137]  Yang, C.-H. and Chang, K.-M. (2006) Adaptive Neural Network Control for Piezoelectric Hysteresis Compensation in a Positioning System. 2006 IEEE International Symposium on Industrial Electronics, Montreal, 9-13 July 2006, 829-834. https://doi.org/10.1109/ISIE.2006.295742
[138]  Quondam-Antonio, S., Riganti-Fulginei, F., Laudani, A., Lozito, G.-M. and Scorretti, R. (2023) Deep Neural Networks for the Efficient Simulation of Macro-Scale Hysteresis Processes with Generic Excitation Waveforms. Engineering Applications of Artificial Intelligence, 121, Article ID: 105940. https://doi.org/10.1016/j.engappai.2023.105940
[139]  Zou, Y. and Wang, B. (2006) Fragmental Ellipse Fitting Based on Least Square Algorithm. Chinese Journal of Scientific Instrument, 27, 808-812. (In Chinese)
[140]  Han, W., Shao, S., Zhang, S., Tian, Z. and Xu, M. (2022) Design and Modeling of Decoupled Miniature Fast Steering Mirror with Ultrahigh Precision. Mechanical Systems and Signal Processing, 167, Article ID: 108521. https://doi.org/10.1016/j.ymssp.2021.108521
[141]  Meng, Y., Zhao, K. and Guo, P. (2022) Experimental Investigation of Coupled Hysteretic Thermo-Electro-Mechanical Properties of Piezo Stack Actuator. In: Wang, Y., Martinsen, K., Yu, T. and Wang, K., Eds., Advanced Manufacturing and Automation XI. IWAMA 2021. Lecture Notes in Electrical Engineering, Vol. 880, Springer, Singapore, 466-471. https://doi.org/10.1007/978-981-19-0572-8_59
[142]  Feng, Y., Hu, Z. and Liang, M. (2023) Modelling of Piezoelectric Actuating Systems Subjected to Variable Loads and Frequencies and Applications to Prescribed Performance Control. International Journal of Control, 96, 2356-2373. https://doi.org/10.1080/00207179.2022.2094836
[143]  Habibullah, H. (2020) 30 Years of Atomic Force Microscopy: Creep, Hysteresis, Cross-Coupling, and Vibration Problems of Piezoelectric Tube Scanners. Measurement, 159, Article ID: 107776. https://doi.org/10.1016/j.measurement.2020.107776
[144]  Mörée, G. and Leijon, M. (2023) Review of Hysteresis Models for Magnetic Materials. Energies, 16, Article No. 3908. https://doi.org/10.3390/en16093908
[145]  Chen, J., Peng, G., Hu, H. and Ning, J. (2020) Dynamic Hysteresis Model and Control Methodology for Force Output Using Piezoelectric Actuator Driving. IEEE Access, 8, 205136-205147. https://doi.org/10.1109/ACCESS.2020.3037216
[146]  Rupnik, U., Alic, A. and Miljavec, D. (2022) Harmonization and Validation of Jiles-Atherton Static Hysteresis Models. Energies, 15, Article No. 6760. https://doi.org/10.3390/en15186760
[147]  Zhou, C., Feng, C., Aye, Y.N. and Ang, W.T. (2021) A Digitized Representation of the Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Piezoelectric Actuator Hysteresis. Micromachines, 12, Article No. 942. https://doi.org/10.3390/mi12080942
[148]  Zhang, S., Zhao, H., Ma, X., Deng, J. and Liu, Y. (2022) A 3-DOF Piezoelectric Micromanipulator Based on Symmetric and Antisymmetric Bending of a Cross-Shaped Beam. IEEE Transactions on Industrial Electronics, 70, 8264-8275. https://doi.org/10.1109/TIE.2022.3213906
[149]  Sabarianand, D.V., Karthikeyan, P. and Muthuramalingam, T. (2020) A Review on Control Strategies for Compensation of Hysteresis and Creep on Piezoelectric Actuators Based Micro Systems. Mechanical Systems and Signal Processing, 140, Article ID: 106634. https://doi.org/10.1016/j.ymssp.2020.106634
[150]  Li, J., Zhang, L., Li, S., Mao, Q. and Mao, Y. (2023) Active Disturbance Rejection Control for Piezoelectric Smart Structures: A Review. Machines, 11, Article No. 174. https://doi.org/10.3390/machines11020174
[151]  Qin, Y., Tian, Y., Zhang, D., Shirinzadeh, B. and Fatikow, S. (2013) A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications. IEEE/ASME Transactions on Mechatronics, 18, 981-989. https://doi.org/10.1109/TMECH.2012.2194301
[152]  Qin, Y., Duan, H. and Han, J. (2021) Direct Inverse Hysteresis Compensation of Piezoelectric Actuators Using Adaptive Kalman Filter. IEEE Transactions on Industrial Electronics, 69, 9385-9395. https://doi.org/10.1109/TIE.2021.3114741
[153]  Rakotondrabe, M. (2010) Bouc-Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators. IEEE Transactions on Automation Science and Engineering, 8, 428-431. https://doi.org/10.1109/TASE.2010.2081979
[154]  Qin, Y., Zhang, Y., Duan, H. and Han, J. (2021) High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling. Micromachines, 12, Article No. 1325. https://doi.org/10.3390/mi12111325
[155]  Ang, W.T., Khosla, P.K. and Riviere, C.N. (2007) Feedforward Controller with Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications. IEEE/ASME Transactions on Mechatronics, 12, 134-142. https://doi.org/10.1109/TMECH.2007.892824
[156]  Dong, R., Tan, Y., Xie, Y. and Li, X. (2023) A Dynamic Hysteresis Model of Piezoelectric Ceramic Actuators. Chinese Journal of Electronics, 32, 1-8.
[157]  Zhong, B., Liu, S., Wang, C., Jin, Z. and Sun, L. (2023) A Novel Feedforward Model of Piezoelectric Actuator for Precision Rapid Cutting. Materials, 16, Article No. 2271. https://doi.org/10.3390/ma16062271
[158]  An, D., et al. (2023) Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model. Micromachines, 14, Article No. 742. https://doi.org/10.3390/mi14040742
[159]  Wu, Y., Chen, H., Sun, N., Fan, Z. and Fang, Y. (2023) Neural Network Based Adaptive Control for a Piezoelectric Actuator with Model Uncertainty and Unknown External Disturbance. International Journal of Robust and Nonlinear Control, 33, 2251-2272. https://doi.org/10.1002/rnc.6517
[160]  Savoie, M. and Shan, J. (2022) Temperature-Dependent Asymmetric Prandtl-Ishlinskii Hysteresis Model for Piezoelectric Actuators. Smart Materials and Structures, 31, Article ID: 055022. https://doi.org/10.1088/1361-665X/ac6552
[161]  Baziyad, A.G., Nouh, A.S., Ahmad, I. and Alkuhayli, A. (2022) Application of Least-Squares Support-Vector Machine Based on Hysteresis Operators and Particle Swarm Optimization for Modeling and Control of Hysteresis in Piezoelectric Actuators. Actuators, 11, Article No. 217. https://doi.org/10.3390/act11080217
[162]  Ji, H.-W., et al. (2023) Modeling and Control of Rate-Dependent Hysteresis Characteristics of Piezoelectric Actuators Based on Analog Filters. Ferroelectrics, 603, 94-115. https://doi.org/10.1080/00150193.2022.2159223
[163]  Li, W., Liu, K., Yang, Z. and Wang, W. (2022) Dynamic Modeling and Disturbance Rejection Compensation for Hysteresis Nonlinearity of High Voltage Piezoelectric Stack Actuators. Smart Materials and Structures, 32, Article ID: 025007. https://doi.org/10.1088/1361-665X/acad4e
[164]  Gu, G.-Y., Yang, M.-J. and Zhu, L.-M. (2012) Real-Time Inverse Hysteresis Compensation of Piezoelectric Actuators with a Modified Prandtl-Ishlinskii Model. Review of Scientific Instruments, 83, Article ID: 065106. https://doi.org/10.1063/1.4728575
[165]  Ko, Y.-R., Hwang, Y., Chae, M. and Kim, T.-H. (2017) Direct Identification of Generalized Prandtl-Ishlinskii Model Inversion for Asymmetric Hysteresis Compensation. ISA Transactions, 70, 209-218. https://doi.org/10.1016/j.isatra.2017.07.004
[166]  Lallart, M., Li, K., Yang, Z., Zhou, S. and Wang, W. (2020) Simple and Efficient Inverse Hysteretic Model and Associated Experimental Procedure for Precise Piezoelectric Actuator Control and Positioning. Sensors and Actuators A: Physical, 301, Article ID: 111674. https://doi.org/10.1016/j.sna.2019.111674
[167]  Zhang, Q., Gao, Y., Li, Q. and Yin, D. (2021) Adaptive Compound Control Based on Generalized Bouc-Wen Inverse Hysteresis Modeling in Piezoelectric Actuators. Review of Scientific Instruments, 92, Article ID: 115004. https://doi.org/10.1063/5.0059368
[168]  Son, N.N., Van Kien, C. and Anh, H.P.H. (2022) Adaptive Sliding Mode Control with Hysteresis Compensation-Based Neuroevolution for Motion Tracking of Piezoelectric Actuator. Applied Soft Computing, 115, Article ID: 108257. https://doi.org/10.1016/j.asoc.2021.108257
[169]  Tan, U.-X., Win, T. and Ang, W.T. (2006) Modeling Piezoelectric Actuator Hysteresis with Singularity Free Prandtl-Ishlinskii Model. 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, 17-20 December 2006, 251-256. https://doi.org/10.1109/ROBIO.2006.340162
[170]  Yang, X., Li, W., Wang, Y., Ye, G. and Su, X. (2009) Hysteresis Modeling of Piezo Actuator Using Neural Networks. 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, 22-25 February 2009, 988-991. https://doi.org/10.1109/ROBIO.2009.4913134
[171]  Gan, J., Zhang, X. and Wu, H. (2016) Tracking Control of Piezoelectric Actuators Using a Polynomial-Based Hysteresis Model. AIP Advances, 6, Article ID: 065204. https://doi.org/10.1063/1.4953597
[172]  Al Janaideh, M. and Aljanaideh, O. (2018) Further Results on Open-Loop Compensation of Rate-Dependent Hysteresis in a Magnetostrictive Actuator with the Prandtl-Ishlinskii Model. Mechanical Systems and Signal Processing, 104, 835-850. https://doi.org/10.1016/j.ymssp.2017.09.004
[173]  Tao, Y.-D., Li, H.-X. and Zhu, L.-M. (2019) Rate-Dependent Hysteresis Modeling and Compensation of Piezoelectric Actuators Using Gaussian Process. Sensors and Actuators A: Physical, 295, 357-365. https://doi.org/10.1016/j.sna.2019.05.046
[174]  Al Janaideh, M., Al Saaideh, M. and Rakotondrabe, M. (2020) On Hysteresis Modeling of a Piezoelectric Precise Positioning System under Variable Temperature. Mechanical Systems and Signal Processing, 145, Article ID: 106880. https://doi.org/10.1016/j.ymssp.2020.106880
[175]  Wang, W., et al. (2020) Research on Asymmetric Hysteresis Modeling and Compensation of Piezoelectric Actuators with PMPI Model. Micromachines, 11, Article No. 357. https://doi.org/10.3390/mi11040357
[176]  Shan, X., Song, H., Cao, H., Zhang, L., Zhao, X. and Fan, J. (2021) A Dynamic Hysteresis Model and Nonlinear Control System for a Structure-Integrated Piezoelectric Sensor-Actuator. Sensors, 21, Article No. 269. https://doi.org/10.3390/s21010269
[177]  Xu, M., Su, L.-R. and Chen, S.-T. (2023) Improved PI Hysteresis Model with One-Sided Dead-Zone Operator for Soft Joint Actuator. Sensors and Actuators A: Physical, 349, Article ID: 114072. https://doi.org/10.1016/j.sna.2022.114072
[178]  Feng, Y. and Li, Y. (2020) System Identification of Micro Piezoelectric Actuators via Rate-Dependent Prandtl-Ishlinskii Hysteresis Model Based on a Modified PSO Algorithm. IEEE Transactions on Nanotechnology, 20, 205-214. https://doi.org/10.1109/TNANO.2020.3034965
[179]  Louis, A., Valérie, P.-B. and Joël, B.-G. (2023) Comparison of Control Strategies for Hysteresis Attenuation in Electromechanical Actuators Subject to Dispersion. Control Engineering Practice, 130, Article ID: 105348. https://doi.org/10.1016/j.conengprac.2022.105348
[180]  Zhang, Y., Wu, J., Huang, P., Su, C.-Y. and Wang, Y. (2023) Inverse Dynamics Modelling and Tracking Control of Conical Dielectric Elastomer Actuator Based on GRU Neural Network. Engineering Applications of Artificial Intelligence, 118, Article ID: 105668. https://doi.org/10.1016/j.engappai.2022.105668
[181]  Yang, L., Zhao, Z., Zhang, Y. and Li, D. (2021) Rate-Dependent Modeling of Piezoelectric Actuators for Nano Manipulation Based on Fractional Hammerstein model. Micromachines, 13, Article No. 42. https://doi.org/10.3390/mi13010042

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413