全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Assessment of Green House Gas Emissions from Thermal Technologies for Electricity Generation in Cameroon Using Life Cycle Analysis Method

DOI: 10.4236/oalib.1110481, PP. 1-17

Subject Areas: Environmental Sciences

Keywords: Life Cycle Assessment, Cameron, Electricity, Green House Gas, Equivalent Emissions Factors

Full-Text   Cite this paper   Add to My Lib

Abstract

This research uses the Life Cycle Assessment methodology to assess the environmental impact of Cameroon’s thermal power production technology. Thus, for Heavy Fuel Oil (HFO), Light Fuel Oil (LFO), and gas technologies, the Green House Gas equivalent emission factor values are 873 g/kWh, 944 g/kWh, and 577 g/kWh, respectively. These figures are much higher than the IEA-reported emission factor of the Cameroonian power mix, which is 207 g of CO2-eq per MWh. On average, these technologies produce 1.7 million metric tons of CO2 equivalent emissions every year.

Cite this paper

Mfetoum, I. M. , Ngangue, M. K. N. , Ngoh, S. K. , Koffi, F. L. D. , Tamba, J. G. and Monkam, L. (2023). Assessment of Green House Gas Emissions from Thermal Technologies for Electricity Generation in Cameroon Using Life Cycle Analysis Method. Open Access Library Journal, 10, e481. doi: http://dx.doi.org/10.4236/oalib.1110481.

References

[1]  Hondo, H. (2005) Life Cycle GHG Emission Analysis of Power Generation Systems: Japanese Case. Energy, 30, 2042-2056. https://doi.org/10.1016/j.energy.2004.07.020
[2]  Khan, U., Zevenhoven, C.A.P., Stougie, L. and Tveit, T.M. (2023) Life Cycle Cost Analysis (LCCA) of Stirling-Cycle-Based Heat Pumps vs. Conventional Boilers. Cleaner Environmental Systems, 8, Article ID: 100105. https://doi.org/10.1016/j.cesys.2022.100105
[3]  Liu, H., Zhou, S., Peng, T. and Ou, X. (2017) Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China. Energies, 10, Article 1515. https://doi.org/10.3390/en10101515
[4]  Chen, L., et al. (2022) Strategies to Achieve a Carbon Neutral Society: A Review. Environmental Chemistry Letters, 20, 2277-2310. https://doi.org/10.1007/s10311-022-01435-8
[5]  Dountio, E.G., Meukam, P., Tchaptchet, D.L.P., Ango, L.E.O. and Simo, A. (2016) Electricity Generation Technology Options under the Greenhouse Gases Mitigation Scenario: Case Study of Cameroon. Energy Strategy Reviews, 13-14, 191-211. https://doi.org/10.1016/j.esr.2016.10.003
[6]  Inoussah, M.M., Adolphe, M.I. and Daniel, L. (2017) Assessment of Sustainability Indicators of Thermoelectric Power Generation in Cameroon Using Exergetic Analysis Tools. Energy and Power Engineering, 9, 22-39. https://doi.org/10.4236/epe.2017.91003
[7]  Bot, B.V., Axaopoulos, P.J., Sakellariou, E.I., Sosso, O.T. and Tamba, J.G. (2022) Energetic and Economic Analysis of Biomass Briquettes Production from Agricultural Residues. Applied Energy, 321, Article ID: 119430. https://doi.org/10.1016/j.apenergy.2022.119430
[8]  Tagne, R.F.T., et al. (2022) Environmental Impact of Second-Generation Biofuels Production from Agricultural Residues in Cameroon: A Life-Cycle Assessment Study. Journal of Cleaner Production, 378, Article ID: 134630. https://doi.org/10.1016/j.jclepro.2022.134630
[9]  Consoli, F., et al. (1993) Guidelines for Life-Cycle Assessment: A “Code of Practice”. The SETAC Workshop, Sesimbra, 31 March-3 April 1993, 1-85.
[10]  Fava, J.A. (1993) A Conceptual Framework for Life-Cycle Impact Assessment. Society of Environmental Toxicology and Chemistry and SETAC Foundation for Environmental Education, Pensacola.
[11]  Lindfors, L.G., et al. (1995) Nord 1995: 20: Nordic Guidelines on Life-Cycle Assessment. NMR. https://scholar.google.com/scholar_lookup?title=Nord 1995%3A20%3A Nordic guidelines on life-cycle assessment&author=Lindfors%2C L.-G.&publication_year=1995
[12]  Fernando, A.T.D. (2010) Embodied Energy Analysis of New Zealand Power Generation Systems. Master’s Thesis, University of Canterbury, Canterbury. https://doi.org/10.2316/P.2010.699-031
[13]  Stamford, L. (2012) Life Cycle Sustainability Assessment of Electricity Generation: A Methodology and an Application in the UK Context. https://www.semanticscholar.org/paper/Life-cycle-sustainability-assessment-of-electricity-Stamford/4468cc3dacd396fee23a5129f17ff93b19c8f52d
[14]  Boustead, I. (1979) Handbook of Industrial Energy Analysis. Ellis Horwood and Halsted Press, Chichester and New York. http://archive.org/details/handbookofindust0000bous
[15]  Treloar, G.J. (1994) Energy Analysis of the Construction of Office Buildings. Deakin University, Geelong.
[16]  Zbicinski, I., Stavenuiter, J. and Kozlowska, B. (2006) Product Design and Life Cycle Assessment. Baltic University Press, Uppsala.
[17]  Klöpffer, W. (2006) The Role of SETAC in the Development of LCA. The International Journal of Life Cycle Assessment, 11, 116-122. https://doi.org/10.1065/lca2006.04.019
[18]  Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S. and van Cleemput, O. (1999) An Overview of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventory Methodology for Nitrous Oxide from Agriculture. Environmental Science & Policy, 2, 325-333. https://doi.org/10.1016/S1462-9011(99)00022-2
[19]  Selmes, D.G. (2005) Towards Sustainability: Direction for Life Cycle Assessment. Master’s Thesis, Heriot-Watt University, Edinburgh. https://www.ros.hw.ac.uk/handle/10399/1136
[20]  LaGrega, M.D., Buckingham, P.L. and Evans, J.C. (2001) Hazardous Waste Management. 2nd edition, McGraw-Hill, Boston. http://catdir.loc.gov/catdir/toc/mh021/00059453.html
[21]  Hunt, R.G., Franklin, W.E. and Hunt, R.G. (1996) LCA—How It Came About: Personal Reflections on the Origin and the Development of LCA in the USA. The International Journal of Life Cycle Assessment, 1, 4-7. https://doi.org/10.1007/BF02978624
[22]  Jensen, A.A., et al. (1998) Life Cycle Assessment (LCA)—A Guide to Approaches, Experiences and Information Sources. European Environment Agency, Copenhagen.
[23]  Heijungs, R., et al. (1992) Environmental Life Cycle Assessment of Products: Guide and Backgrounds (Part 1). https://hdl.handle.net/1887/8061
[24]  Khasreen, M.M., Banfill, P.F.G. and Menzies, G.F. (2009) Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability, 1, 674-701. https://doi.org/10.3390/su1030674
[25]  Broekema, R. and Kramer, G. (2014) LCA of Dutch Semi-Skimmed Milk and Semi-Mature Cheese. Comparative LCA of Dutch Dairy Products and Plant-Based Alternatives.
[26]  DeMendonça, M. and Baxter, T.E. (2001) Design for the Environment (DFE)—An Approach to Achieve the ISO 14000 International Standardization. Environmental Management and Health, 12, 51-56. https://doi.org/10.1108/09566160110381922
[27]  Rapport MINEE (2021) Statistical Yearbook of Cameroon’s Water and Energy. Collection of Series of Water and Energy Sub-Sector Statistical Information up to 2019. Ministère de l’Eau et de l’Energie, Yaoundé.
[28]  PDSE (2006) Document Stratégique de la Croissance et de l’Emploi, horizon à 2030, Cameroun.
[29]  SIE-Cameroun (2011) Situation Energétique au Cameroun: Rapport 2011. Ministère de l’Eau et de l’Energie, Cameroun.
[30]  Institut National de la Statistique (2020) Annuaire 2019 Statistique du Cameroun. Cameroun. https://ins-cameroun.cm/en/statistique/annuaire-statistique-du-cameroun-edition-2019-2/
[31]  World Energy Council (2004) Comparison of Energy Systems Using Life Cycle Assessment: A Special Report of the World Energy Council. London.
[32]  Lenzen, M. and Munksgaard, J. (2002) Energy and CO2 Life-Cycle Analyses of wInd Turbines—Review and Applications. Renewable Energy, 26, 339-362. https://doi.org/10.1016/S0960-1481(01)00145-8
[33]  Norton, B., Eames, P.C. and Lo, S.N. (1998) Full-Energy-Chain Analysis of Greenhouse Gas Emissions for Solar Thermal Electric Power Generation Systems. Renewable Energy, 15, 131-136. https://doi.org/10.1016/S0960-1481(98)00158-X

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413