全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Simple Identification of the Mineralogy and Geochemistry of Sedimentary Environments

DOI: 10.4236/oalib.1110072, PP. 1-9

Subject Areas: Geology, Geochemistry, Sedimentology, Mineralogy

Keywords: Sedimentary Environment, Mineralogy, Geochemistry, Identification, Tracing

Full-Text   Cite this paper   Add to My Lib

Abstract

Sedimentary environments are an important part of paleogeography and sedimentology, and there is a long history of using geochemical and mineralogical methods to analyze palaeoenvironmental problems using sedimentary rocks as a research vehicle. By summarizing the important results of previous work on tracing the palaeoenvironment using the composition and distribution characteristics of the macronutrients and trace elements as well as the characteristics of mineral composition, we aim to sort out the mineralogical and geochemical characteristics of the palaeoenvironment. Among them, the identification of paleoclimate, paleoproductivity, paleosalinity, paleodepth and palaeo-oxygen phase are important elements of the sedimentary environment, and it is more important to sort out the mineralogical and geochemical characteristics of them.

Cite this paper

Tan, S. , Bai, J. , Hu, C. and Shen, C. (2023). Simple Identification of the Mineralogy and Geochemistry of Sedimentary Environments. Open Access Library Journal, 10, e072. doi: http://dx.doi.org/10.4236/oalib.1110072.

References

[1]  Zhu, X.M. (2008) Sedimentary Petrology. Petroleum Industry Press, Beijing.
[2]  Tian, J.C. and Zhang, X. (2016) Sedimentary Geochemistry. Geological Press, Beijing.
[3]  Xu, Y.J., Du, Y.S. and Yang, J.H. (2007) Advances in Sediment Source Analysis. Geoscience Intelligence, 26, 26-32.
[4]  Chen, Q.H., Li, W.H., Hu, X.L., et al. (2012) Tectonic Setting and Provenance Analysis of Late Paleozoic Sedimentary Rocks in the Ordos Basin. Actageologica Sinica, 86, 1150-1162.
[5]  Daviesa, N.S., Anthony, P., Slater, B.J., et al. (2019) Evolutionary Synchrony of Earth’s Biosphere and Sedimentary-Stratigraphic Record. Earth-Science Reviews, 2019, Article ID: 102979. https://doi.org/10.1016/j.earscirev.2019.102979
[6]  Sato, H., Ishikawa, A., Onoue, T., et al. (2021) Sedimentary Record of Upper Triassic Impact in the Lagonegro Basin, Southern Italy: Insights from Highly Siderophile Elements and Re-Os Isotope Stratigraphy across the Norian/Rhaetian Boundary. Chemical Geology, 586, Article ID: 120506. https://doi.org/10.1016/j.chemgeo.2021.120506
[7]  Richardson, J.A., Lepland, A., Hints, O., et al. (2021) Effects of Early Marine Diagenesis and Site-Specific Depositional Controls on Carbonate-Associated Sulfate: Insights from Paired S and O Isotopic Analyses. Chemical Geology, 2021, Article ID: 120525. https://doi.org/10.1016/j.chemgeo.2021.120525
[8]  Coimbra, R., Rocha, F., Immenhauser, A., et al. (2021) Carbonate-Hosted Clay Minerals: A Critical Re-Evaluation of Extraction Methods and Their Possible Bias on Palaeoenvironmental Information. Earth-Science Reviews, 214, Article ID: 103502. https://doi.org/10.1016/j.earscirev.2021.103502
[9]  Jones, N.P. and James, B. (2015) Origin of Carbonate Sedimentary Rocks.
[10]  Reijmer, J.J.G. (2021) Marine Carbonate Factories: Review and Update. Sedimentology, 68, 1729-1796. https://doi.org/10.1111/sed.12878
[11]  Rusk, B.G., Lowers, H.A. and Reed, M.H. (2008) Trace Elements in Hydrothermal Quartz: Relationships to Cathodoluminescent Textures and Insights into Vein Formation. Geology, 36, 547-550. https://doi.org/10.1130/G24580A.1
[12]  Vos, K., Vandenberghe, N. and Elsen, J. (2014) Surface Textural Analysis of Quartz Grains by Scanning Electron Microscopy (SEM): From Sample Preparation to Environmental Interpretation. Earth-Science Reviews, 128, 93-104. https://doi.org/10.1016/j.earscirev.2013.10.013
[13]  Tian, J.C., Chen, G.W., Zhang, X., et al. (2006) Application of Sedimentary Geochemistry in Sequential Stratigraphic Analysis. Journal of Chengdu University of Technology (Natural Science Edition), 33, 30-35.
[14]  Meyer, E.E., Quicksall, A.N., Landis, J.D., Link, P.K. and Bostick, B.C. (2012) Trace and Rare Earth Elemental Investigation of a Sturtian Cap Carbonate, Pocatello, Idaho: Evidence for Ocean Redox Conditions before and during Carbonate Deposition. Precambrian Research, 192-195, 89-106. https://doi.org/10.1016/j.precamres.2011.09.015
[15]  Leithold, E.L., Blair, N.E. and Wegmann, K.W. (2016) Source-to-Sink Sedimentary Systems and Global Carbon Burial: A River Runs through It. Earth-Science Reviews, 153, 30-42. https://doi.org/10.1016/j.earscirev.2015.10.011
[16]  Xia, P., Ning, M., Wen, H.G., et al. (2021) Magnesium Isotope Tracing of Carbonate Sedimentation-Formation Processes-Implications for Recovering the Magnesium Isotopic Composition of Seawater at Depth. Journal of Sedimentology, 39, 1546-1564.
[17]  Chamley, H. (1989) Clay Sedimentology. Springer, Berlin. https://doi.org/10.1007/978-3-642-85916-8
[18]  Gao, Y. (2015) Late Cretaceous Paleoclimate Evolution in the Songliao Basin-Evidence from Continental Scientific Drilling of Songke 1 Well. China University of Geosciences, Beijing.
[19]  Tan, J. (2020) Sediment Sources and Paleoclimatic Changes in the Cretaceous Jialai Basin in Response to the Coastal Ranges of Eastern China. China University of Geosciences, Beijing.
[20]  Deconinck, J.F., Blanc-Valleron, M.M., Rouchy, J.M., et al. (2000) Palaeoenvironmental and Diagenetic Control of the Mineralogy of Upper Cretaceous-Lower Tertiary Deposits of the Central Palaeo-Andean Basin of Bolivia (Potosi Area). Sedimentary Geology, 132, 263-278. https://doi.org/10.1016/S0037-0738(00)00035-X
[21]  Wang, B. (2012) Sedimentation, Evolution and Paleoclimatic and Paleoenvironmental Studies of the Late Carboniferous Carbonate Terraces in the Yanjiang Region of Anhui. Hefei University of Technology, Hefei.
[22]  Xie, S.C., Liang, B., Guo, J.Q., Yi, Y., Evershed, R.P., Maddy, D., et al. (2003) Biomarker Compounds and Associated Global Changes. Quaternary Research, No. 5, 521-528.
[23]  Chen, L.L. (2018) Biomarker Records of the Paleoclimate and Paleoenvironmental Evolution along the Fujian and Zhejiang Coast in the East China Sea. China University of Geosciences, Wuhan.
[24]  Bianchi, T.S. and Canuel, E.A. (2012) Chemical Biomarkers in Aquatic Ecosystems. Princeton University Press, Princeton. https://doi.org/10.23943/princeton/9780691134147.001.0001
[25]  Brocks, J.J., Jarrett, A., Sirantoine, E., et al. (2017) The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548, 578-581. https://doi.org/10.1038/nature23457
[26]  Di, X., Jian, C., Bing, L., et al. (2021) Neoproterozoic Postglacial Paleoenvironment and Hydrocarbon Potential: A Review and New Insights from the Doushantuo Formation Sichuan Basin, China. Earth-Science Reviews, 212, Article ID: 103453. https://doi.org/10.1016/j.earscirev.2020.103453
[27]  Pfeifer, K., Kasten, S., Hensen, C., et al. (2001) Reconstruction of Primary Productivity from the Barium Contents in Surface Sediments of the South Atlantic Ocean. Marine Geology, 177, 13-24. https://doi.org/10.1016/S0025-3227(01)00121-9
[28]  Nameroff, T.J., Calvert, S.E. and Murray, J.W. (2004) GlacialInterglacial Variability in the Eastern Tropical North Pacific Oxygen Minimum Zone Recorded by Redox-Sensitive Trace Metals. Paleoceanography, 19, 373-379. https://doi.org/10.1029/2003PA000912
[29]  Rieu, R., Allen, P.A., Plotze, M., et al. (2007) Climatic Cycles during a Neoproterozoic “Snowball” Glacial Epoch. Geology, 35, 299-302. https://doi.org/10.1130/G23400A.1
[30]  Wang, A.-H. (1996) Comparison of the Effect of Different Forms of Strontium-Barium Ratios on the Discrimination of Sedimentary Environments. Journal of Sedimentology, 14, 168-173.
[31]  Tuchkova, M.I., Sokolov, S.D., Isakova, T.N., et al. (2018) Carboniferous Carbonate Rocks of the Chukotka Fold Belt: Tectnostratigraphy, Depositional Environments and Paleogeography. Journal of Geodynamics, 120, 77-107. https://doi.org/10.1016/j.jog.2018.05.006
[32]  Xiong, X.H. and Xiao, J.F. (2011) Geochemical Tracing of Sedimentary Environments. Earth and Environment, 39, 405-414.
[33]  Parrish, J.T. (1980) Lakes: Chemistry, Geology, Physics. Journal of Geology, 88, 249-250. https://doi.org/10.1086/628502
[34]  Wang, L.L., Fu, Y. and Fang, S.J. (2018) Elemental Geochemical Characteristics and Paleo-Sedimentary Environment of the Majiagou Formation in the Eastern Margin of the Ordos Basin. Petroleum Experimental Geology, 40, 519-525.
[35]  Yandoka, B.S., Abdullah, W.H., Abubakar, M.B., et al. (2015) Geochemical Characterisation of Early Cretaceous Lacustrine Sediments of Bima Formation, Yola Sub-Basin, Northern Benue Trough, NE Nigeria: Organic Matter Input, Preservation, Paleoenvironment and Palaeoclimatic Conditions. Marine & Petroleum Geology, 61, 82-94. https://doi.org/10.1016/j.marpetgeo.2014.12.010
[36]  Pattan, J.N., Rao, C.M., Higgs, N.C., et al. (1995) Distribution of Major, Trace and Rare-Earth Elements in Surface Sediments of the Wharton Basin, Indian Ocean. Chemical Geology, 121, 201-215. https://doi.org/10.1016/0009-2541(94)00112-L
[37]  Veizer, J. and Demovic, R. (1974) Strontium as a Tool in Facies Analysis. Journal of Sedimentary Research, 44, 93-115. https://doi.org/10.1306/74D72991-2B21-11D7-8648000102C1865D
[38]  Shi, J.Z., Niu, Y.Z., Xu, W., et al. (2021) Geochemical Characteristics and Environmental Significance of Carbonate Rocks from the Baishan Formation of the Carboniferous System in the Shibanquan West of the Yinji Basin. Journal of Jilin University (Earth Science Edition), 51, 680-693.
[39]  Jones, B. and Manning, D.A.C. (1994) Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111, 111-129. https://doi.org/10.1016/0009-2541(94)90085-X
[40]  Wignall, P.B. and Twitchett, R.J. (1996) Oceanic Anoxia and the End Permian Mass Extinction. Science, 272, 1155-1158. https://doi.org/10.1126/science.272.5265.1155
[41]  Kimura, H. and Watanabe, Y. (2001) Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29, 995-998. https://doi.org/10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2
[42]  Chen, D.F., Huang, Y.Y., Yuan, X.L., et al. (2005) Seep Carbonates and Preserved Methane Oxidizing Archaea and Sulfate Reducing Bacteria Fossils Suggest Recent Gas Venting on the Seafloor in the Northeastern South China Sea. Marine and Petroleum Geology, 22, 613-621. https://doi.org/10.1016/j.marpetgeo.2005.05.002
[43]  Veizer, J. (1983) Trace Elements and Isotopes in Sedimentary Carbonates. Reviews in Mineralogy, 11, 154.
[44]  Ernst, W. (1970) Geochemical Facies Analysis. Elsevier, New York.
[45]  Tribovillard, N., Algeo, T.J., Lyons, T., et al. (2006) Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232, 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
[46]  Hallberg, R.O. (1982) Diagenetic and Environmental Effects on Heavy-Metal Distribution in Sediments: A Hypothesis with an Illustration from the Baltic Sea. In: Fanning, K.A. and Manheim, F.T., Eds., The Dynamic Environment of the Ocean Floor, Lexington Books, Lexington, 305-316.
[47]  Byrne, R.H. and Kim, K.H. (1990) Rare Earth Element Scavenging in Seawater. Geochimica et Cosmochimica Acta, 54, 2645-2656. https://doi.org/10.1016/0016-7037(90)90002-3
[48]  Byrne, R.H. and Sholkovitz, E.R. (1996) Handbook on the Physics and Chemistry of the Rare Earths. Elsevier, Amsterdam, 497-593. https://doi.org/10.1016/S0168-1273(96)23009-0
[49]  Franchi, F., Hofmann, A., Cavalazzi, B., et al. (2015) Differentiating Marine vs Hydrothermal Processes in Devonian Carbonate Mounds Using Rare Earth Elements (Kess Kess Mounds, Anti-Atlas, Morocco). Chemical Geology, 409, 69-86. https://doi.org/10.1016/j.chemgeo.2015.05.006
[50]  Bau, M. and Dulski, P. (1996) Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37-55. https://doi.org/10.1016/0301-9268(95)00087-9

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413