全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Effect of Overexpression of SlbZIP39 on Plant Architecture and Fruit Size in Tomato (Solanum lycopersicum L.)

DOI: 10.4236/oalib.1109969, PP. 1-14

Subject Areas: Molecular Biology

Keywords: Abiotic Stresses, Hormonal Treatments, Fruit Size, Tomato (Solanum lycopersicum)

Full-Text   Cite this paper   Add to My Lib

Abstract

The transcription factors of the bZIP (basic leucine zipper) family are involved in the regulation of molecular analysis in fruit development, plant architecture, and response to environmental factors. Here, we performed transcription of the SlbZIP39 gene in various tissues and fruit developmental stages. However, they revealed that the different transcription levels of tomato tissues were expressed by floral parts and immature green stages. We observed that SlbZIP39 was induced by the treatments of tomato plants with D-mannitol, NaCl, IAA, GA3, ABA, and dehydration stress. We further revealed that Group IV bZIP transcription factors are expressed in fruit developmental stages in overexpressing plants. In addition, we found that overexpression of SlbZIP39 decreased plant height and reduced fruit size. However, overexpression of SlbZIP39 may affect early flowering and fruit development in tomato. These results suggest that the transcription factor of SlbZIP39 is involved in abiotic stresses, regulation of fruit size, and plant architecture.

Cite this paper

Lwin, Y. Y. , Thu, M. K. , Yee, K. H. and Khin, M. M. (2023). Effect of Overexpression of SlbZIP39 on Plant Architecture and Fruit Size in Tomato (Solanum lycopersicum L.). Open Access Library Journal, 10, e9969. doi: http://dx.doi.org/10.4236/oalib.1109969.

References

[1]  Alonso, R., Oñate-Sánehez, L., Weltmeier, F., et al. (2009) A Pivotal Role of the Basic Leucine Zipper Transcription Factor bZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation. The Plant Cell, 21, 1747-1761. https://doi.org/10.1105/tpc.108.062968
[2]  Zhang, L., Zhang, L., Xia, C., Zhao, G., Liu, J., Jia, J. and Kong, X. (2015) A Novel Wheat bZIP Transcription Factor, TabZIP60, Confers Multiple Abiotic Stress Tolerances in Transgenic Arabidopsis. Physiologia Plantarum, 153, 538-554. https://doi.org/10.1111/ppl.12261
[3]  Orellana, S., Yañez, M., Espinoza, A., Verdugo, I., González, E., Ruiz-Lara, S. and Casaretto, J.A. (2010) The Transcription Factor SlAREB1 Confers Drought, Salt Stress Tolerance and Regulates Biotic and Abiotic Stress-Related Genes in Tomato. Plant Cell & Environment, 33, 2191-2208. https://doi.org/10.1111/j.1365-3040.2010.02220.x
[4]  Hsieh, T.H., Li, C.W., Su, R.C., Cheng, C.P., Sanjaya and Tsai, Y.C. (2010) A Tomato bZIP Transcription Factor, SlAREB, Is Involved in Water Deficit and Salt Stress Response. Planta, 231, 1459-1473. https://doi.org/10.1007/s00425-010-1147-4
[5]  Pan, Y., Hu, X., Li, C., Xu, X., Su, C., Li, J., et al. (2017) SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance. Genes, 8, 402. https://doi.org/10.3390/genes8120402
[6]  Zhu, M., Meng, X., Cai, J., Li, G., Dong, T. and Li, Z. (2018) Basic Leucine Zipper Transcription Factor SlbZIP1 Mediates Salt and Drought Stress Tolerance in Tomato. BMC Plant Biology, 18, 83. https://doi.org/10.1186/s12870-018-1299-0
[7]  Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. (2002) bZIP Transcription Factors in Arabidopsis. Trends in Plant Science, 7, 106-111. https://doi.org/10.1016/S1360-1385(01)02223-3
[8]  Nijhawan, A., Jain, M., Tyagi, A.K. and Khurana, J.P. (2008) Genomic Survey and Gene Expression Analysis of the Basic Leucine Zipper Transcription Factor Family in Rice. Plant Physiology, 146, 333-350. https://doi.org/10.1104/pp.107.112821
[9]  Wei, K., Chen, J., Wang, Y., Chen, Y., Chen, S., Lin, Y., et al. (2012) Genome-Wide Analysis of bZIP-Encoding Genes in Maize. DNA Research, 19, 463-476. https://doi.org/10.1093/dnares/dss026
[10]  Zhang, M., Liu, Y., Shi, H., Guo, M., Chai, M., He, Q., et al. (2018) Evolutionary and Expression Analyses of Soybean Basic Leucine Zipper Transcription Factor Family. BMC Genomics, 19, 159. https://doi.org/10.1186/s12864-018-4511-6
[11]  Liu, J., Chen, N., Chen, F., Cai, B., Santo, S.D., Tornielli, G.B., et al. (2014) Genome Wide Analysis and Expression Profile of the bZIP Transcription Factor Gene Family in Grapevine (Vitis vinifera). BMC Genomics, 15, Article No. 281. http://www.biomedcentral.com/1471-2164/15/281 https://doi.org/10.1186/1471-2164-15-281
[12]  Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., et al. (2010) AREB1, AREB2, and ABF3 Are Master Transcription Factors That Cooperatively Regulate ABRE-Dependent ABA Signaling Involved in Drought Stress Tolerance and Require ABA for Full Activation. The Plant Journal, 61, 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x
[13]  Barbosa, E.G.G., Leite, J.P., Marin, S.R.R., Marinho, J.P., et al. (2013) Overexpression of the ABA-Dependent AREB1 Transcription Factor from Arabidopsis thaliana Improves Soybean Tolerance to Water Deficit. Plant Molecular Biology Reporter, 31, 719-730. https://doi.org/10.1007/s11105-012-0541-4
[14]  Wang, Z., Su, G., Li, M., Ke, Q., Kim, S.Y., Li, H., et al. (2016) Overexpressing Arabidopsis ABF3 Increases Tolerance to Multiple Abiotic Stresses and Reduces Leaf Size in Alfalfa. Plant Physiology & Biochemistry, 109, 199-208. https://doi.org/10.1016/j.plaphy.2016.09.020
[15]  Sanagi, M., Lu, Y., Aoyama, S., Morita, Y., Mitsuda, N., Ikeda, M., et al. (2018) Sugar-Responsive Transcription Factor bZIP3 Affects Leaf Shape in Arabidopsis Plants. Plant Biotechnology, 35, 167-170. https://doi.org/10.5511/plantbiotechnology.18.0410a
[16]  Assunção, A.G.L., Herrero, E., Lin, Y.F., Huettel, B., Talukdar, S., Smaczniak, C., et al. (2010) Arabidopsis thalianaa Transcription Factors bZIP19 and bZIP23 Regulate the Adaptation to Zinc Deficiency. The Proceedings of the National Academy of Sciences, 107, 10296-10301. https://doi.org/10.1073/pnas.1004788107
[17]  Shen, H., Cao, K. and Wang, X. (2008) AtbZIP16 and AtbZIP68, Two New Members of GBFs, Can Interact with Other G Group bZIPs in Arabidopsis thaliana. BMB Reports, 41, 132-138. https://doi.org/10.5483/BMBRep.2008.41.2.132
[18]  Hanson, J., Hanssen, M., Wiese, A., Hendriks, M.M.W.B. and Smeekens, S. (2008) The Sucrose Regulated Transcription Factor bZIP11 Affects Amino Acid Metabolism by Regulating the Expression of Asparagine Synthetase 1 and Proline Dehydrogenase 2. The Plant Journal, 53, 935-949. https://doi.org/10.1111/j.1365-313X.2007.03385.x
[19]  Matiolli, C.C., Tomaz, J.P., Duarte, G.T., Prado, F.M., et al. (2011) The Arabidopsis bZIP Gene AtbZIP63 Is a Sensitive Integrator of Transient Abscisic Acid and Glucose Signals. Plant Physiology, 157, 692-705. https://doi.org/10.1104/pp.111.181743
[20]  Zou, M., Guan, Y., Ren, H., Zhang, F. and Chen, F. (2008) A bZIP Transcription Factor, OsABI5, Is Involved in Rice Fertility and Stress Tolerance. Plant Molecular Biology, 66, 675-683. https://doi.org/10.1007/s11103-008-9298-4
[21]  Kang, J.Y., Choi, H.I., Im, M.Y. and Kim, S.Y. (2002) Arabidopsis Basic Leucine Zipper Proteins That Mediate Stress-Responsive Abscisic Acid Signaling. The Plant Cell, 14, 343-357. https://doi.org/10.1105/tpc.010362
[22]  Hsieh, W.P., Hsieh, H.L. and Wu, S.H. (2012) Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development. The Plant Cell, 24, 3997-4011. https://doi.org/10.1105/tpc.112.105478
[23]  Gao, S.Q., Chen, M., Xu, Z.S., Zhao, C.P., Li, L., Xu, H.J., et al. (2011) The Soybean GmbZIP1 Transcription Factor Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants. Plant Molecular Biology, 75, 537-553. https://doi.org/10.1007/s11103-011-9738-4
[24]  Cifuentes-esquivel, N., Celiz-Balboa, J., Henriquez-Valencia, C., Mitina, I., Arrano-Salinas, P., Moreno, A.A., et al. (2018) bZIP17 Regulates the Expression of Genes Related to Seed Storage and Germination, Reducing Seed Susceptibility to Osmotic Stress. Journal of Cellular Biochemistry, 119, 6857-6868. https://doi.org/10.1002/jcb.26882
[25]  Seong, E.S., Kwon, S.S., Ghimire, B.K., Yu, C.Y., Cho, D.H., Lim, J.D., et al. (2008) LebZIP2 Induced by Salt and Drought Stress and Transient Overexpression by Agrobacterium. BMB Reports, 41, 693-698. https://doi.org/10.5483/BMBRep.2008.41.10.693
[26]  Yanez, M., Caceres, S., Orellana, S., Bastias, A., Verdugo, I., Ruiz-Lara, S. and Casaretto, J.A. (2009) An Abiotic Stress-Responsive bZIP Transcription Factor from Wild and Cultivated Tomatoes Regulates Stress-Related Genes. Plant Cell Reports, 28, 1497-1507. https://doi.org/10.1007/s00299-009-0749-4
[27]  Tu, M., Wang, X., Feng, T., Sun, X., Wang, Y., Huang, L., et al. (2016) Plant Science Expression of a Grape (Vitis vinifera) bZIP Transcription Factor, VlbZIP36, in Arabidopsis thaliana Confers Tolerance of Drought Stress during Seed Germination and Seedling Establishment. Plant Science, 252, 311-323. https://doi.org/10.1016/j.plantsci.2016.08.011
[28]  Tu, M., Wang, X., Zhu, Y., Wang, D., Zhang, X., Cui, Y., et al. (2017) VlbZIP30 of Grapevine Functions in Drought Tolerance via the Abscisic Acid Core Signaling Pathway. 1-56. https://doi.org/10.1101/231811
[29]  Fillatti, J.J., Kiser, J., Rose, R. and Comai, L. (1987) Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium tumefaciens Vector. Biotechnology, 5, 726-730. https://doi.org/10.1038/nbt0787-726
[30]  Li, D., Fu, F., Zhang, H. and Song, F. (2015) Genome-Wide Systematic Characterization of the bZIP Transcriptional Factor Family in Tomato (Solanum lycopersicum L.). BMC Genomics, 16, Article No. 771. https://doi.org/10.1186/s12864-015-1990-6
[31]  Banerjee, A. and Roychoudhury, A. (2017) Abscisic-Acid-Dependent Basic Leucine Zipper bZIP Transcription Factors in Plant Abiotic Stress. Protoplasma, 254, 3-16. https://doi.org/10.1007/s00709-015-0920-4
[32]  Guedes Correa, L.G., Riano-Pachon, D.M., Guerra Schrago, C., Viicentini dos Santos, R., Mueller-Roeber, B., et al. (2008) The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes. PLOS ONE, 3, e2944. https://doi.org/10.1371/journal.pone.0002944
[33]  Seong, E.S., Yoo, J.H., Kim, N.J., Choi, J.H., Lee, J.G., Ghimire, B.K., Chung, I.M. and Yu, C.Y. (2016) Morphological Changes and Increase of Resistance to Oxidative Stress by Overexpression of the LebZIP2 Gene in Nicotiana benthamiana. Russian Journal of Plant Physiolology, 63, 124-131. https://doi.org/10.1134/S1021443716010143
[34]  Shekhawat, U.K.S. and Ganapathi, T.R. (2014) Transgenic Banana Plants Overexpressing MusabZIP53 Display Severe Growth Retardation with Enhanced Sucrose and Polyphenol Oxidase Activity. Plant Cell, Tissue and Organ Culture, 116, 387-402. https://doi.org/10.1007/s11240-013-0414-z
[35]  Kim, S., Kang, J.Y., Cho, D.I., Park, J.H. and Kim, S.Y. (2004) ABF2, an ABRE-Binding bZIP Factor, Is an Essential Component of Glucose Signaling and Its Overexpression Affects Multiple Stress Tolerance. The Plant Journal, 40, 75-87. https://doi.org/10.1111/j.1365-313X.2004.02192.x
[36]  Lee, S.C., Choi, H.W., Hwang, I.S., Choi, D.S. and Hwang, B.K. (2006) Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor, CAbZIP1, in Enhanced Resistance to Pathogen Infection and Environmental Stresses. Planta, 224, 1209-1225. https://doi.org/10.1007/s00425-006-0302-4
[37]  Yang, O., Popova, O.V., Süthoff, U., Lüking, I., Dietz, K. and Golldack, D. (2009) The Arabidopsis Basic Leucine Zipper Transcription Factor AtbZIP24 Regulates Complex Transcriptional Networks Involved in Abiotic Stress Resistance. Gene, 436, 45-55. https://doi.org/10.1016/j.gene.2009.02.010
[38]  Lin, D., Xiang, Y., Xian, Z. and Li, Z. (2016) Ectopic Expression of SlAGO7 Alters Leaf Pattern and Inflorescence Architecture and Increases Fruit Yield in Tomato. Physiologia Plantarum, 157, 490-506. https://doi.org/10.1111/ppl.12425
[39]  Huang, W., Peng, S., Xian, Z., Lin, D., Hu, G., Yang, L., Ren, M. and Li, Z. (2017) Overexpression of a Tomato miR171 Target Gene SlGRAS24 Impacts Multiple Agronomical Traits via Regulating Gibberellin and Auxin Homeostasis. Plant Biotechnology Journal, 15, 472-488. https://doi.org/10.1111/pbi.12646
[40]  Liu, Y., Huang, W., Xian, Z., Hu, N., Lin, D., Ren, H., Chen, J., Su, D. and Li, Z. (2017) Overexpression of SlGRAS40 in Tomato Enhances Tolerance to Abiotic Stresses and Influences Auxin and Gibberellin Signaling. Frontiers in Plant Science, 8, 1659. https://doi.org/10.3389/fpls.2017.01659
[41]  Li, M., Wang, X., Li, C., Li, H., Zhang, J. and Ye, Z. (2018) Silencing GRAS2 Reduces Fruit Weight in Tomato. Journal of Integrative Plant Biology, 60, 498-513. https://doi.org/10.1111/jipb.12636
[42]  Huang, B., Routaboul, J.M., Liu, M., Deng, W., Maza, E., Mila, I., et al. (2017) Overexpression of the Class D MADS-Box Gene Sl-AGL11 Impacts Fleshy Tissue Differentiation and Structure in Tomato Fruits. Journal of Experimental Botany, 68, 4869-4884. https://doi.org/10.1093/jxb/erx303
[43]  Bastias, A., Yanez, M., Osorio, S., Arabona, V., Gomez-Cadenas, A., Fernie, A.R. and Casaretto, J.A. (2014) The Transcription Factor AREB1 Regulates Primary Metabolic Pathways in Tomato Fruits. Journal of Experimental Botany, 65, 2351-2363. https://doi.org/10.1093/jxb/eru114

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413