全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Temperature and Magnetic Field Effect on the Thermodynamic Properties of 2DEG

DOI: 10.4236/oalib.1109863, PP. 1-14

Subject Areas: Thermodynamics

Keywords: Two-Dimensional Electron Gas, Density of State, Chemical Potential, Specific Heat Capacity, Magnetization, De Haas-Van Alphen Effect

Full-Text   Cite this paper   Add to My Lib

Abstract

A numerical calculation of the temperature and magnetic field dependence of the specific heat capacity, the magnetization, and the chemical potential is carried out. Of particular interest are the properties of the energy of a magnetic field in a two-dimensional electron gas exposed to a magnetic field. Thus, in this paper, we illustrate the effect of temperature on the oscillation dHvA of specific heat capacity and magnetization. As well a mathematical model has been developed for calculating the temperature dependence of the oscillations of the chemical potential and the density of states under the influence of a magnetic field. Using the proposed model, the results were explained at different broadening factors Γ. The calculated results show that specific heat capacity and magnetization increase as the magnetic field increases. Additionally, these increases carry out that the magnetic field is large enough to neglect the mixing of Landau levels caused by the sharp peak of Landeau levels. Moreover, the 2D dHvA effect is characterized by a sawtooth strap at a very low temperature. These findings revealed that all advantages of GaAs allowed them to use in the manufacture of devices such as microwaves, laser diodes, and solar cells.

Cite this paper

Bouzgarrou, S. and Almutairi, H. A. H. (2023). Temperature and Magnetic Field Effect on the Thermodynamic Properties of 2DEG. Open Access Library Journal, 10, e9863. doi: http://dx.doi.org/10.4236/oalib.1109863.

References

[1]  Schoenberg. D. (1939) The Magnetic Properties of Bismuth, III. Further Measurements on the de Haas-van Alphen Effect. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 170, 341-364. https://doi.org/10.1098/rspa.1939.0036
[2]  De Haas, W.J. and Van Alfphen, P.M. (1930) The Dependence of the Susceptibility of Diamagnetic Metals Upon the Field. Proceedings of the Amsterdam Academy of Sciences, 33, 1106.
[3]  Lifshitz, L.M. and Kosevich, A.M., (2009) On the Theory of Magnetic Susceptibility of Metals at Low Temperatures. Ukrainian Journal of Physics, 53, 112-121.
[4]  Villagonzalo, C. and Gammag, R. (2011) The Intrinsic Features of the Specific Heat at Half-Filled Landau Levels of Two-Dimensional Electron Systems. Journal of Low Temperature Physics, 163, 43-52. https://doi.org/10.1007/s10909-010-0259-3
[5]  Das Sarma, S. (1981) Two-Dimensional Level Broadening in the Extreme Quantum Limit. Physical Review B, 23, 4592-4596. https://doi.org/10.1103/PhysRevB.23.4592
[6]  Das Sarma, S. (1980) Self-Consistent Theory of Screening in a Two Dimensional Electron Gas under Strong Magnetic Field. Solid State Communications, 36, 357-360. https://doi.org/10.1016/0038-1098(80)90071-X
[7]  MacDonald, A.H., Oji, H.C.A. and Liu, K.L. (1986) Thermodynamic Properties of an Interacting Two-Dimensional Electron Gas in a Strong Magnetic Field. Physical Review B, 34, 2681-2689. https://doi.org/10.1103/PhysRevB.34.2681
[8]  Eisenstein, J.P., Stormer, H.L., Narayanamurti, V., Cho, A.Y., Gossard, A.C. and Tu, C.W. (1985) Density of States and de Haas-van Alphen Effect in Two-Dimensional Electron Systems. Physical Review B, 55, 875-878. https://doi.org/10.1103/PhysRevLett.55.875
[9]  Wilde, M.A., Schwarz, M.P., Heyn, C., Heitmann, D., Grundler, D., Reuter, D. and Wieck, A.D. (2006) Experimental Evidence of the Ideal de Haas-van Alphen Effect in a Two-Dimensional System. Physical Review B, 73, Article ID: 125325. https://doi.org/10.1103/PhysRevB.73.125325
[10]  Zhu, M., Usher, A., Matthews, A., Potts, A., Elliott, M., Herrenden-Harker, W., Ritchie, D. and Simmon, M. (2003) Magnetization Measurements of High-Mobility Two-Dimensional Electron Gases. Physical Review B, 67, Article ID: 155329. https://doi.org/10.1103/PhysRevB.67.155329
[11]  Wang, J.K., Tsui, D.C., Santos, M. and Shayegan, M. (1992) Heat-Capacity Study of Two-Dimensional Electrons in GaAs/AlxGa1-xAs Multiple-Quantum-Well Structures in High Magnetic Fields: Spin-split Landau levels. Physical Review B, 45, 4384-4389. https://doi.org/10.1103/PhysRevB.45.4384
[12]  Gornik, E., Lassnig, R., Strasser, G., Störmer, H.L., Gossard, A.C. and Wiegmann, W. (1985) Specific Heat of Two-Dimensional Electrons in GaAs-GaAlAs Multi-layers. Physical Review Letters, 54, 1820-1823. https://doi.org/10.1103/PhysRevLett.54.1820
[13]  Mosser, V., Weiss, D., von Klitzing, K., Ploog, K. and Weimann, G. (1986) Density of states of GaAs-AlGaAs-Heterostructures Deduced from Temperature Dependent Magnetocapacitance Measurements. Solid State Communications, 58, 5-7. https://doi.org/10.1016/0038-1098(86)90875-6
[14]  Das Sarma, S. and Xie, X.C. (1988) Strong-Field Density of States in Weakly Disordered Two-Dimensional Electron Systems. Physical Review Letters, 61, 738-741. https://doi.org/10.1103/PhysRevLett.61.738
[15]  David, T. (2017) Applications of Quantum Mechanics: University of Cambridge Part II Mathematical Tripos. Preprint Typeset in JHEP Style-HYPER VERSION.
[16]  Gross, R. and Max, A. (2014) Festkörperphysik. De Gruyter Oldenbourg, München. https://doi.org/10.1524/9783110358704
[17]  Murgan, R. (2021) Infinitite Degeneracy of Landau Levels from the Euclidean Symmetry with Central Extension Revisited. European Journal of Physics, 42, Article ID: 035406. https://doi.org/10.1088/1361-6404/abdf35
[18]  Kittel, C. (2004) Introduction to Solid State Physics. 8th Edition, John Wiley & Sons, Inc., Hoboken.
[19]  Iqbal, A. (2012) Some Aspects on the Schödinger Equation. Master’s Thesis, Gothenburg University, Gothenburg.
[20]  Bouzgarrou, S. (2020) New Anomaly at Low Temperature for Heat Capacity. Open Access Library Journal, 7, e6477. https://doi.org/10.4236/oalib.1106477
[21]  Gammag, R. and Villagonzalo, C. (2008) The Interplay of Landau Level Broadening and Temperature on Two-Dimensional. Solid State Communications, 146, 487-490. https://doi.org/10.1016/j.ssc.2008.03.042
[22]  Gammag, R. and Villagonzalo, C. (2012) Persistent Spin Splitting of a Two-Dimensonal Electron Gas in Tilted Magnetic Fields. The European Physical Journal B, 85, Article No. 22. https://doi.org/10.1140/epjb/e2011-20615-x
[23]  Bouzgarrou, S., Ben Salem, M.M., Kalboussi, A. and Souifi, A. (2013) Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s. American Journal of Physics and Application, 1, 18-24. https://doi.org/10.11648/j.ajpa.20130101.14
[24]  Martin, J.S. (2009) Milli-kelvin Thermodynamic and Transport Measurements of Low Dimensional Systems in High Magnetic Fields. Ph.D. Thesis, University of Exeter, Exeter.
[25]  Donfack, B. and Fotuea, A.J. (2022) Thermodynamic Properties of Asymmetric Semiconductor Quantum Wire under the Magnetic Field. (Preprint) https://doi.org/10.21203/rs.3.rs-2011010/v1
[26]  van Houten, H., Beenakker, C.W.J. and Staring. A.A.M. (1992) Coulomb-Blockade Oscillations in Semiconductor Nanostructures. In: Grabert, H. and Devoret, M.H., Eds., Single Charge Tunneling, NATO Science Series B, Vol. 294, Springer, Boston, 167-216. https://doi.org/10.1007/978-1-4757-2166-9_5
[27]  Suzuki, M.S. and Suzuki, I.S. (2013) Lecture Note on de Haas van Alphen Effect Solid State Physics. SUNY, Binghamton.
[28]  Jahan, L.K., Boyacioglu, B. and Chatterjee, A. (2019) Effect of Confinement Potential Shape on the Electronic, Thermodynamic, Magnetic and Transport Properties of a GaAs Quantum Dot at Finite Temperature. Scientific Reports, 9, Article No. 1. https://doi.org/10.1038/s41598-019-52190-w
[29]  Elsaid, M.K., Shaer, A., Hjaz, E. and Yahya, M.H. (2020) Impurity Effects on the Magnetization and Magnetic Susceptibility of an Electron Confined in a Quantum Ring under the Presence of an External Magnetic Field. Chinese Journal of Physics, 64, 9-17. https://doi.org/10.1016/j.cjph.2020.01.002
[30]  Krishtopenko, S.S., Gavrilenko, V.I. and Goiran. M. (2012) The Effect of Exchange Interaction on Quasiparticle Landau Levels in Narrow-Gap Quantum Well Heterostructures. Journal of Physics Condensed Matter, 24, Article ID: 135601. https://doi.org/10.1088/0953-8984/24/13/135601
[31]  Erkaboev, U.I., Rakhimov, R.G., Sayidov, N.A. and Mirzaev, J.I. (2022) Modeling the Temperature Dependence of the Density Oscillation of Energy States in Two-Dimensional Electronic Gases under the Impact of a Longitudinal and Transversal Quantum Magnetic Fields. Indian Journal of Physics, 97, 1061-1070. https://doi.org/10.1007/s12648-022-02435-8
[32]  Abdulazizov, B.T., Gulyamov, G., Baymatov, P.J., Inoyatov, S.T., Tokhirjonov, M.S. and Juraev, K.N. (2022) Peculiarities of the Temperature Dependence of the Chemical Potential of a Two-Dimensional Electron Gas in Magnetic Field. SPIN, 12, Article ID: 2250002. https://doi.org/10.1142/S2010324722500023
[33]  Lemuel, J.F.S. and Rayda, P.G. (2018) Linear Chemical Potential Leading to a Closed Form of the Magnetization of a 2DEG in a Perpendicular Magnetic Field. PISIKA-Journal of the Physics Society of the Philippines, 1, Article No. 08. https://doi.org/10.20526/pisika.01a18.02

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413