全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Antioxidants and Long Covid

DOI: 10.4236/oalib.1109414, PP. 1-19

Subject Areas: Pathology

Keywords: Warburg Effect, Oxidative Stress, Magnesuria, Inflammasome, Butyrate

Full-Text   Cite this paper   Add to My Lib

Abstract

Long Covid has many symptoms that overlap with ME (myalgic encephalo-myelitis)/CFS (chronic fatigue syndrome), FM (fibromyalgia), EBV (Epstein-Barr virus), CMV (cytomegalovirus), CIRS (chronic inflammatory response syndrome), MCAS (mast cell activation syndrome), POTS (postural orthostatic tachycardia syndrome), and post viral fatigue syndrome. They all portend a “long haul” with an antioxidant shortfall and elevated Ca:Mg. Oxidative stress is the root cause. Linkage between TGF (transforming growth factor)-β, IFN (interferon)-γ, the RAS (renin angiotensin system), and the KKS (kallikrein kinin system) is discussed. Technical explanations for the renin aldosterone paradox in POTS, the betrayal of TGF-β, and the commonality of markers for the Warburg effect are offered. The etiology of the common Long Covid symptoms of post exertional malaise, fatigue, and brain fog as well as anosmia, hair loss, and GI symptoms is technically discussed. Ca:Mg is critical to the glutamate/GABA balance. The role of GABA and butyrates from the “good” intestinal bacteria in the gut-brain axis and its correlation with chronic fatigue diseases are explored. The crosstalk between the ENS (enteric nervous system) and the ANS (autonomic nervous system) and the role of the vagus in both are emphasized. HRV (heart rate variability), the fifth vital sign, points to an expanded gut-brain-heart/lung axis. A suggested approach to all of these—Long Covid, chronic fatigue diseases, post viral fatigue syndrome, and general health—is presented.

Cite this paper

Chambers, P. (2022). Antioxidants and Long Covid. Open Access Library Journal, 9, e9414. doi: http://dx.doi.org/10.4236/oalib.1109414.

References

[1]  Palsson-McDermott, E.M. and O’Neill, L.A.J. (2013) The Warburg Effect Then and Now: From Cancer to Inflammatory Diseases. BioEssays, 35, 965-973. https://doi.org/10.1002/bies.201300084
[2]  Pascale, R.M., Calvisi, D.F., Simile, M.M., Feo, C.F. and Feo, F. (2020) The Warburg Effect 97 Years after Its Discovery. Cancers, 12, Article No. 2819. https://doi.org/10.3390/cancers12102819
[3]  Kieran, D. and Basaraba, R.J. (2012) Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 624607. https://doi.org/10.3389/fcimb.2021.624607
[4]  Cumming, B.M., Pacl, H.T. and Steyn, A.J.C. (2020) Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Frontiers in Cellular and Infection Microbiology, 10, Article ID: 576596. https://doi.org/10.3389/fcimb.2020.576596
[5]  de Jong, G.M., McCall, M.B.B., Dik, W.A., Urbanus, R.T., Wammes, L.J., et al. (2020) Transforming Growth Factor-Beta Profiles Correlate with Clinical Symptoms and Parameters of Haemostasis and Inflammation in a Controlled Human Malaria Infection, Cytokine, 125, Article ID: 154838. https://doi.org/10.1016/j.cyto.2019.154838
[6]  Possemiers, H., Vandermosten, L. and Van den Steen, P.E. (2021) Etiology of Lactic Acidosis in Malaria. PLOS Pathogens, 17, e1009122. https://doi.org/10.1371/journal.ppat.1009122
[7]  Lotz, M. and Zuraw, B.L. (1987) Interferon-γ Is a Major Regulator of C1-Inhibitor Synthesis by Human Blood Monocytes. The Journal of Immunology, 139, 3382-3387. https://pubmed.ncbi.nlm.nih.gov/3119706/
[8]  Zuraw, B.L. and Lotz, M. (1990) Regulation of the Hepatic Synthesis of C1 Inhibitor by the Hepatocyte Stimulating Factors Interleukin 6 and Interferon γ. The Journal of Biological Chemistry, 265, 12664-12670. https://doi.org/10.1016/S0021-9258(19)38395-4
[9]  Chambers, P.W. (2022) Long Covid, Short Magnesium. Open Access Library Journal, 9, e8736. https://www.scirp.org/journal/paperinformation.aspx?paperid=117413
[10]  Grassrootshealth Nutrient Research Institute (2020) Could a Lack of Magnesium be Worsening Your Ability to Handle Stress? https://www.grassrootshealth.net/blog/lack-magnesium-worsening-ability-handle-stress/
[11]  Malecki, J.M., Davydova, E. and Falnes, P.O. (2022) Protein Methylation in Mitochondria. Journal of Biological Chemistry, 298, Article ID: 101791. https://doi.org/10.1016/j.jbc.2022.101791
[12]  Rhein, V.F., Carroll, J., He, J., Ding, S., Fearnley, I.M. and Walker, J.E. (2014) Human METTL20 Methylates Lysine Residues Adjacent to the Recognition Loop of the Electron Transfer Flavoprotein in Mitochondria. The Journal of Biological Chemistry, 289, 24640-24651. https://doi.org/10.1074/jbc.M114.580464
[13]  Know, L. (2018) Mitochondria and the Future of Medicine: The Key to Understanding Disease, Chronic Illness, Aging, and Life Itself. Chelsea Green Publishing, Hartford.
[14]  Porter, N.S., Jason, L.A., Boulton, A., Bothne, N. and Coleman, B. (2010) Alternative Medical Interventions Used in the Treatment and Management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia. The Journal of Alternative and Complementary Medicine, 16, 235-249. https://doi.org/10.1089/acm.2008.0376
[15]  Kim, S.H., Kim, H.J., Kim, S., Kang, J.S., Koo, Y.T., et al. (2022) A Comparative Study of Antifatigue Effects of Taurine and Vitamin C on Chronic Fatigue Syndrome Pharmacology & Pharmacy, 13, 300-312. https://doi.org/10.4236/pp.2022.138023
[16]  Bounous, G. and Molson, J. (1999) Competition for Glutathione Precursors between the Immune System and the Skeletal Muscle: Pathogenesis of Chronic Fatigue Syndrome. Medical Hypotheses, 53, 347-349. https://doi.org/10.1054/mehy.1998.0780
[17]  Alves, C.R.R., Santiago, B.M., Lima, F.R., Otaduy, M.C.G., Calich, A.L., et al. (2013) Creatine Supplementation in Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Care & Research, 65, 1449-1459. https://doi.org/10.1002/acr.22020
[18]  Dworzański, J., Strycharz-Dudziak, M., Kliszczewska, E., Kielczykowska, M., Dworzańska, A., Drop, B., et al. (2020) Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) Activity in Patients with Diabetes Mellitus Type 2 Infected with Epstein-Barr Virus. PLOS ONE, 15, e0230374. https://doi.org/10.1371/journal.pone.0230374
[19]  Miller, A.L., Kelly, G.S. and Tran, J. (1997) Homocysteine Metabolism: Nutritional Modulation and Impact on Health and Disease. https://musculoskeletalkey.com/homocysteine-metabolism-nutritional-modulation-and-impact-on-health-and-disease/
[20]  Fukumoto, K., Ito, K., Saer, B., et al. (2022) Excess S-Adenosylmethionine Inhibits Methylation via Catabolism to Adenine. Communications Biology, 5, Article No. 313. https://doi.org/10.1038/s42003-022-03280-5
[21]  Mahoney, D.E., Hiebert, J.B., Thimmesch, A., Pierce, J.T., Vacek, J.L., et al. (2018) Understanding D-Ribose and Mitochondrial Function. Advances in Bioscience and Clinical Medicine, 6, 1-5. https://doi.org/10.7575/aiac.abcmed.v.6n.1p.1
[22]  Dawidowicz, A.J., Olszowy-Tomczyk, M. and Typek, R. (2021) Synergistic and Antagonistic Antioxidant Effects in the Binary Cannabinoids Mixtures. Fitoterapia, 153, Article ID: 104992. https://doi.org/10.1016/j.fitote.2021.104992
[23]  Bjørklund, G., Dadar, M., Pen, J.J., Chirumbolo, S. and Aaseth, J. (2019) Chronic Fatigue Syndrome (CFS): Suggestions for a Nutritional Treatment in the Therapeutic Approach. Biomedicine & Pharmacotherapy, 109, 1000-1007. https://doi.org/10.1016/j.biopha.2018.10.076
[24]  Stark, C.M., Nylund, C.M., Gorman, G.H. and Lechner, B.L. (2016) Primary Renal Magnesium Wasting: An Unusual Clinical Picture of Exercise-Induced Symptoms. Physiological Reports, 4, e12773. https://doi.org/10.14814/phy2.12773
[25]  Rosanoff, A. (2010) Rising Ca:Mg Intake Ratio from Food in USA Adults: A Concern? Magnesium Research, 23, S181-S193. http://mgwater.com/Ca-Mg.pdf
[26]  Klein, J., Wood, J., Jaycox, J., Lu, P. and Dhodapkar, R.M. (2022) Distinguishing Features of Long COVID Identified through Immune Profiling. MedRxiv 2022. 08.09.22278592. https://doi.org/10.1101/2022.08.09.22278592
[27]  Phoenix Rising: A Community for People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (2012) The Hypocortisolism in Chronic Fatigue Syndrome (ME/CFS)—Artifact or Central Factor? https://phoenixrising.me/myalgic-encephalomyelitis-chronic-fatigue-syndrome-mecfs-research/pharmacogenomics/the-hypocortisolism-in-chronic-fatigue-syndrome-mecfs-artifact-or-central-factor/
[28]  Hoad, A., Spickett, G., Elliott, J. and Newton, J. (2008) Postural Orthostatic Tachycardia Syndrome Is an Under-Recognized Condition in Chronic Fatigue Syndrome. QJM: An International Journal of Medicine, 101, 961-965. https://doi.org/10.1093/qjmed/hcn123
[29]  Kinsey, D.L. (1979) Calcium and Magnesium Sensitivity of the Carotid Baroreceptor Reflex in Cats. Circulation Research, 45, 815-821. https://doi.org/10.1161/01.RES.45.6.815
[30]  Sayago, C.M. and Beierwaltes, W.H. (2001) Nitric Oxide Synthase and cGMP-Mediated Stimulation of Renin Secretion. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281, R1146-R1151. https://doi.org/10.1152/ajpregu.2001.281.4.R1146
[31]  Howard, A.B., Alexander, R.W. and Taylor, W.R. (1995) Effects of Magnesium on Nitric Oxide Synthase Activity in Endothelial Cells. American Journal of Physiology-Cell Physiology, 269, C612-C618. https://doi.org/10.1152/ajpcell.1995.269.3.C612
[32]  Neubauer, B., Machura, K., Kett, R., Luisa, M. and Lopez, S.S. (2013) Endothelium-Derived Nitric Oxide Supports Renin Cell Recruitment through the Nitric Oxide-Sensitive Guanylate Cyclase Pathway. Hypertension, 61, 400-407. https://doi.org/10.1161/HYPERTENSIONAHA.111.00221
[33]  Atanassova, N. and Koeva, Y. (2012) Hydrohysteroid Dehydrogenases—Biological Role and Clinical Importance—Review. In: Canuto, R.A., Ed., Dehydrogenases, IntechOpen, London. https://doi.org/10.5772/54149
[34]  Pinto, M.D., Lambert, N., Downs, C.A., Abrahim, H., Hughes, T.D. and Rahmani, A.M. (2022) Antihistamines for Post Acute Sequelae of SARS-CoV-2 Infection. The Journal for Nurse Practitioners, 18, 335-338. https://doi.org/10.1016/j.nurpra.2021.12.016
[35]  Gewin, L. (2019) The Many Talents of Transforming Growth Factor-β in the Kidney. Current Opinion in Nephrology and Hypertension, 28, 203-210. https://doi.org/10.1097/MNH.0000000000000490
[36]  Vander Ark, A., Cao, J. and Li, X. (2018) TGF-β Receptors: In and beyond TGF-β Signaling. Cellular Signalling, 52, 112-120. https://doi.org/10.1016/j.cellsig.2018.09.002
[37]  Zhang, X., Chen, Y., Li, Z., Han, X. and Liang, Y. (2020) TGFBR3 Is an Independent Unfavourable Prognostic Marker in Oesophageal Squamous Cell Cancer and Is Positively Correlated with Ki-67. International Journal of Experimental Pathology, 101, 223-229. https://doi.org/10.1111/iep.12380
[38]  Song, H., Yang, J. and Yu, W. (2022) Promoter Hypomethylation of TGFBR3 as a Risk Factor of Alzheimer’s Disease: An Integrated Epigenomic-Transcriptomic Analysis. Frontiers in Cell and Developmental Biology, 9, Article ID: 825729. https://doi.org/10.3389/fcell.2021.825729
[39]  Oronsky, B., Larson, C., Hammond, T.C., et al. (2021) A Review of Persistent Post-COVID Syndrome (PPCS). Clinical Reviews in Allergy & Immunology. https://doi.org/10.1007/s12016-021-08848-3
[40]  Montoya, J.G., Holmes, T.H. and Anderson, J.N. (2017) Cytokine Signature Associated with Disease Severity in Chronic Fatigue Syndrome Patients. Proceedings of the National Academy of Sciences of the United States of America, 114, E7150-E7158. https://doi.org/10.1073/pnas.1710519114
[41]  Lidbury, B.A., Kita, B., Lewis, D.P., et al. (2017) Activin B Is a Novel Biomarker for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) Diagnosis: A Cross Sectional Study. Journal of Translational Medicine, 15, Article No. 60. https://doi.org/10.1186/s12967-017-1161-4
[42]  Zhang, H.Y., Liu, Z.D., Hu, C.J., Wang, D.X., et al. (2011) Up-Regulation of TGF-β1 mRNA Expression in Peripheral Blood Mononuclear Cells of Patients with Chronic Fatigue Syndrome. Journal of the Formosan Medical Association, 110, 701-704. https://doi.org/10.1016/j.jfma.2011.09.006
[43]  Iempridee, T., Das, S., Xu, I. and Mert, J.E. (2011) Transforming Growth Factor β-Induced Reactivation of Epstein-Barr Virus Involves Multiple Smad-Binding Elements Cooperatively Activating Expression of the Latent-Lytic Switch BZLF1 Gene. Journal of Virology, 85, 7836-7848. https://doi.org/10.1128/JVI.01197-10
[44]  Kossmann, T.M., Morganti-Kossmann, M.C., Orenstein, J.M., Britt, W.J., Wahl, S.M., et al. (2003) Cytomegalovirus Production by Infected Astrocytes Correlates with Transforming Growth Factor-β Release. The Journal of Infectious Diseases, 187, 534-541. https://doi.org/10.1086/373995
[45]  Hoffman, B. (2021) Chronic Inflammatory Response Syndrome (CIRS) Evaluation and Treatment. Hoffman Centre for Integrative and Functional Medicine, Calgary. https://hoffmancentre.com/chronic-inflammatory-response-syndrome-cirs-evaluation-and-treatment/
[46]  Zhang, X., Huang, W.J. and Chen, W.W. (2016) TGF-β1 Factor in the Cerebrovascular Diseases of Alzheimer’s Disease. European Review for Medical and Pharmacological Sciences, 20, 5178-5185. https://pubmed.ncbi.nlm.nih.gov/28051272/
[47]  Wang, L., et al. (2022) Association of COVID-19 with New-Onset Alzheimer’s Disease. Journal of Alzheime’s Disease, 89, 411-414. https://doi.org/10.3233/JAD-220717
[48]  Xia, X., Wang, Y. and Zheng, J. (2021) COVID-19 and Alzheimer’s Disease: How One Crisis Worsens the Other. Translational Neurodegeneration, 10, Article No. 15. https://doi.org/10.1186/s40035-021-00237-2
[49]  Carbone, I., Lazzarotto, T., Ianni, M., Porcellini, E., Forti, P., et al. (2014) Herpes Virus in Alzheimer’s Disease: Relation to Progression of the Disease. Neurobiology of Aging, 35, 122-129. https://doi.org/10.1016/j.neurobiolaging.2013.06.024
[50]  Bredesen, D.E. (2016) Inhalational Alzheimer’s Disease: An Unrecognized-and Treatable-Epidemic. Aging, 108, 304-313. https://doi.org/10.18632/aging.100896
[51]  Tzeng, N.S., Chung, C.H., Liu, F.C., Chou, Y.C., Lin, F.H., et al. (2018) Fibromyalgia and Risk of Dementia—A Nationwide, Population-Based, Cohort Study. American Journal of the Medical Sciences, 355, 153-161. https://doi.org/10.1016/j.amjms.2017.09.002
[52]  Barnes, L.L., Capuano, A.W., Aiello, A.E., Turner, A.D., Yolken, R.H., et al. (2015) Cytomegalovirus Infection and Risk of Alzheimer Disease in Older Black and White Individuals. The Journal of Infectious Diseases, 211, 230-237. https://doi.org/10.1093/infdis/jiu437
[53]  Vaidya, B. and Sharma, S.S. (2020) Transient Receptor Potential Channels as an Emerging Target for the Treatment of Parkinson’s Disease: An Insight into Role of Pharmacological Interventions. Frontiers in Cell and Developmental Biology, 8, Article ID: 584513. https://doi.org/10.3389/fcell.2020.584513
[54]  Belrose, J. and Jackson, M. (2018) TRPM2: A Candidate Therapeutic Target for Treating Neurological Diseases. Acta Pharmacologica Sinica, 39, 722-732. https://doi.org/10.1038/aps.2018.31
[55]  Ding, R., Yin, Y.-L. and Jiang, L.-H. (2021) Reactive Oxygen Species-Induced TRPM2-Mediated Ca2 Signalling in Endothelial Cells. Antioxidants, 10, Article No. 718. https://doi.org/10.3390/antiox10050718
[56]  Zhu, D., You, J., Zhao, N. and Xu, H. (2019) Magnesium Regulates Endothelial Barrier Functions through TRPM7, MagT1, and S1P1. Advanced Science, 6, Article ID: 1901166. https://doi.org/10.1002/advs.201901166
[57]  Starkus, J., Beck, A., Fleig, A. and Penner, R. (2007) Regulation of TRPM2 by Extra- and Intracellular Calcium. Journal of General Physiology, 130, 427-440. https://doi.org/10.1085/jgp.200709836
[58]  Zhou, J., Gao, G., Zhang, S., Wang, H., Ke, L., et al. (2020) Influences of Calcium and Magnesium Ions on Cellular Antioxidant Activity (CAA) Determination. Food Chemistry, 320, Article ID: 126625. https://doi.org/10.1016/j.foodchem.2020.126625
[59]  Du, Y., Chen, J., Shen, L. and Wang, B. (2022) TRP Channels in Inflammatory Bowel Disease: Potential Therapeutic Targets. Biochemical Pharmacology, 203, Article ID: 115195. https://doi.org/10.1016/j.bcp.2022.115195
[60]  Smith, R.A.J., Hartley, R.C., Cochemé, H.M. and Murphy, M.P. (2012) Mitochondrial Pharmacology. Trends in Pharmacological Sciences, 33, 341-352. https://doi.org/10.1016/j.tips.2012.03.010
[61]  Giorgio, V., Guo, L., Bassot, C., Petronilli, V. and Bernardi, P. (2018) Calcium and Regulation of the Mitochondrial Permeability Transition. Cell Calcium, 70, 56-63. https://doi.org/10.1016/j.ceca.2017.05.004
[62]  Kang, H., Seo, E., Oh, Y.S., et al. (2022) TGF-β Activates NLRP3 Inflammasome by an Autocrine Production of TGF-β in LX-2 Human Hepatic Stellate Cells. Molecular and Cellular Biochemistry, 477, 1329-1338. https://doi.org/10.1007/s11010-022-04369-5
[63]  Wang, R., Wang, S.Y., Wang, Y., Xin, R., Xia, B., et al. (2020) The Warburg Effect Promoted the Activation of the NLRP3 Inflammasome Induced by Ni-Refining Fumes in BEAS-2B Cells. Toxicology and Industrial Health, 36, 580-590. https://doi.org/10.1177/0748233720937197
[64]  Zhang, Z.T., Du, X.M., Ma, X.J., et al. (2016) Activation of the NLRP3 Inflammasome in Lipopolysaccharide-Induced Mouse Fatigue and Its Relevance to Chronic Fatigue Syndrome. Journal of Neuroinflammation, 13, Article No. 71. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-016-0539-1
[65]  Song, L., Pei, L., Yao, S., Wu, Y. and Shang, Y. (2017) NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Frontiers in Cellular Neuroscience, 11, Article No. 63. https://doi.org/10.3389/fncel.2017.00063
[66]  Zhen, Y. and Zhang, H. (2019) NLRP3 Inflammasome and Inflammatory Bowel Disease. Frontiers in Immunology, 10, Article No. 276. https://doi.org/10.3389/fimmu.2019.00276
[67]  Xiao, W. (2010) NLRP3 Inflammasome-Mediated Inflammatory Process in Patients with Irritable Bowel Syndrome Dissertation Topic. Shandong University, Jinan. https://www.dissertationtopic.net/doc/663467
[68]  Olcum, M., Tastan, B., Kiser, C., Genc, S. and Genc, K. (2020) Chapter Seven—Microglial NLRP3 Inflammasome Activation in Multiple Sclerosis. In: Donev, R., Ed., Advances in Protein Chemistry and Structural Biology, Vol. 119, Academic Press, Cambridge, 247-308. https://doi.org/10.1016/bs.apcsb.2019.08.007
[69]  Shen, H.H., Yang, Y.X., Meng, X., Luo, X.Y., Li, X.M., et al. (2018) NLRP3: A Promising Therapeutic Target for Autoimmune Diseases. Autoimmunity Reviews, 17, 694-702. https://doi.org/10.1016/j.autrev.2018.01.020
[70]  Reinhart, N.M., Akinyemi, I.A., Frey, T.R., Xu, H., Agudelo, C., et al. (2022) The Danger Molecule HMGB1 Cooperates with the NLRP3 Inflammasome to Sustain Expression of the EBV Lytic Switch Protein in Burkitt Lymphoma Cells. Virology, 566, 136-142. https://doi.org/10.1016/j.virol.2021.12.002
[71]  Bazrafkan, M., Hosseini, E., Nazari, M., Amorim, C.A. and Sadeghi, M.R. (2021) NLRP3 Inflammasome: A Joint, Potential Therapeutic Target in Management of COVID-19 and Fertility Problems. Journal of Reproductive Immunology, 148, Article ID: 103427. https://doi.org/10.1016/j.jri.2021.103427
[72]  Lee, G.S., Subramanian, N., Kim, A., et al. (2012) The Calcium-Sensing Receptor Regulates the NLRP3 Inflammasome through Ca2 and cAMP. Nature, 492, 123-127. https://doi.org/10.1038/nature11588
[73]  Chang, Y.Y., Kao, M.C., Lin, J.A., Wong, C.S. and Tzeng, I.S. (2018) Effects of MgSO4 on Inhibiting Nod-Like Receptor Protein 3 Inflammasome Involve Decreasing Intracellular Calcium. Journal of Surgical Research, 221, 257-265. https://doi.org/10.1016/j.jss.2017.09.005
[74]  Zhao, X.J., Yang, Y.Z., Zheng, Y.J., Wang, S.C., Gu, H.M., et al. (2017) Magnesium Isoglycyrrhizinate Blocks Fructose-Induced Hepatic NF-κB/NLRP3 Inflammasome Activation and Lipid Metabolism Disorder. European Journal of Pharmacology, 809, 141-150. https://doi.org/10.1016/j.ejphar.2017.05.032
[75]  Jiang, X., Zhong, L., Sun, D. and Rong, L. (2016) Magnesium Lithospermate B Acts against Dextran Sodium Sulfate-Induced Ulcerative Colitis by Inhibiting Activation of the NRLP3/ASC/Caspase-1 Pathway. Environmental Toxicology and Pharmacology, 41, 72-77. https://doi.org/10.1016/j.etap.2015.10.009
[76]  Lund, T.M., Obel, L.F., Risa, Ø. and Sonnewald, U. (2011) β-Hydroxybutyrate Is the Preferred Substrate for GABA and Glutamate Synthesis While Glucose Is Indispensable during Depolarization in Cultured GABAergic Neurons. Neurochemistry International, 59, 309-318. https://doi.org/10.1016/j.neuint.2011.06.002
[77]  Gobaille, S., Hechler, V., Andriamampandry, C., Kemmel, V. and Maitre, M. (1999) γ-Hydroxybutyrate Modulates Synthesis and Extracellular Concentration of γ-Aminobutyric acid In Discrete Rat Brain Regions in Vivo. Journal of Pharmacology and Experimental Therapeutics, 290, 303-309 https://pubmed.ncbi.nlm.nih.gov/10381791/
[78]  Boyd, A. (2015) Gamma-Aminobutyric Acid (GABA) Monograph. https://www.fxmedicine.com.au/blog-post/gamma-aminobutyric-acid-gaba-monograph
[79]  Zanos, P. (2016) Ketamine and Esketamine in Depression—A Synopsis on Efficacy and Mechanism of Action. Psych Scene Hub. https://psychscenehub.com/psychinsights/ketamine-and-depression/
[80]  Möykkynen, T., Uusi-Oukari, M., Heikkilä, J., Lovinger, D.M., Lüddens, H., et al. (2001) Magnesium Potentiation of the Function of Native and Recombinant GABAA Receptors. Neuroreport, 12, 2175-2179. https://doi.org/10.1097/00001756-200107200-00026
[81]  Von Bartheld, C.S., Hagen, M.M. and Butowt, R. (2020) Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-Analysis Reveals Significant Ethnic Differences. ACS Chemical Neuroscience, 11, 2944-2961. https://doi.org/10.1021/acschemneuro.0c00460
[82]  Levy, L.M. and Henkin, R.I. (2004) Brain Gamma-Aminobutyric Acid Levels Are Decreased in Patients with Phantageusia and Phantosmia Demonstrated by Magnetic Resonance Spectroscopy. Journal of Computer Assisted Tomography, 28, 721-727. https://doi.org/10.1097/00004728-200411000-00001
[83]  Henkin, R.I. (2006) Treatment of Distortions of Taste and Smell. Taste and Smell Clinic. http://www.tasteandsmell.com/sep06.htm
[84]  Barker-Haliski, M. and White, H.S. (2015) Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harbor Perspectives in Medicine, 5, a022863. https://doi.org/10.1101/cshperspect.a022863
[85]  Tataru, A. and Nicoara, E. (2004) Idiopathic Diffuse Alopecias in Young Women Correlated with Hypomagnesemia. Journal of the European Academy of Dermatology and Venereology, 18, 393-394. https://doi.org/10.1111/j.1468-3083.2004.00660.x
[86]  Chambers, P.W. (2021) Basigin Binds Spike S on SARS-CoV2. Open Access Library Journal, 8, 1-7. https://www.scirp.org/journal/paperinformation.aspx?paperid=113177
[87]  Brown, E.M. and Chen, C.J. (1989) Calcium, Magnesium and the Control of PTH Secretion. Bone and Mineral, 5, 249-257. https://doi.org/10.1016/0169-6009(89)90003-2
[88]  Haensel, A., Mills, P.J., Nelesen, R.A., Ziegler, M.J. and Dimsdale, J.E. (2008) The Relationship between Heart Rate Variability and Inflammatory Markers in Cardiovascular Diseases. Psychoneuroendocrinology, 33, 1305-1312. https://doi.org/10.1016/j.psyneuen.2008.08.007
[89]  Gidron, Y., Deschepper, R., De Couck, M., Thayer, J.F. and Velkeniers, B. (2018) The Vagus Nerve Can Predict and Possibly Modulate Non-Communicable Chronic Diseases: Introducing a Neuroimmunological Paradigm to Public Health. Journal of Clinical Medicine, 7, Article No. 371. https://doi.org/10.3390/jcm7100371
[90]  Mol, M.B.A., Strous, M.T.A., van Osch, F.H.M., Vogelaar, F.J., Barten, D.G., Farchi, M., et al. (2021) Heart-Rate-Variability (HRV), Predicts Outcomes in COVID-19. PLOS ONE, 16, e0258841. https://doi.org/10.1371/journal.pone.0258841
[91]  Sessa, F., Anna, V., Messina, G., Cibelli, G., Monda, V., et al. (2018) Heart Rate Variability as Predictive Factor for Sudden Cardiac Death. Aging, 10, 166-177. https://doi.org/10.18632/aging.101386
[92]  Behbahani, S., Dabanloo, N.J., Nasrabadi, A.M. and Dourado, A. (2016) Prediction of Epileptic Seizures Based on Heart Rate Variability. Technology and Health Care, 24, 795-810. https://doi.org/10.3233/THC-161225
[93]  Engel, T., Ben-Horin, S. and Beer-Gabel, M. (2015) Autonomic Dysfunction Correlates with Clinical and Inflammatory Activity in Patients with Crohn’s Disease. Inflammatory Bowel Diseases, 21, 2320-2326. https://doi.org/10.1097/MIB.0000000000000508
[94]  Hirten, R.P., Danieletto, M., Scheel, R., Shervey, M., Ji, J., et al. (2021) Longitudinal Autonomic Nervous System Measures Correlate with Stress and Ulcerative Colitis Disease Activity and Predict Flare. Inflammatory Bowel Diseases, 27, 1576-1584. https://doi.org/10.1093/ibd/izaa323
[95]  Escorihuela, R.M., Capdevila, L., Castro, J.R., et al. (2020) Reduced Heart Rate Variability Predicts Fatigue Severity in Individuals with Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis. Journal of Translational Medicine, 18, Article No. 4. https://doi.org/10.1186/s12967-019-02184-z
[96]  Choi, K.W. and Jeon, H.J. (2020) Heart Rate Variability for the Prediction of Treatment Response in Major Depressive Disorder. Frontiers in Psychiatry, 11, Article No. 607. https://doi.org/10.3389/fpsyt.2020.00607
[97]  Kim, Y.H., Jung, K.I. and Song, C.H. (2012) Effects of Serum Calcium and Magnesium on Heart Rate Variability in Adult Women. Biological Trace Element Research, 150, 116-122. https://doi.org/10.1007/s12011-012-9518-2
[98]  Lladós, G. and Mateu, L. (2022) Pilot Study Suggests Long COVID Could Be Linked to the Effects of SARS-CoV-2 on the Vagus Nerve. European Society of Clinical Microbiology and Infectious Diseases. https://www.eurekalert.org/news-releases/943102
[99]  Burkhardt, C. (2009) ‘Lone’ Atrial Fibrillation Precipitated by Monosodium Glutamate and Aspartame. International Journal of Cardiology, 137, 307-308. https://doi.org/10.1016/j.ijcard.2009.01.028
[100]  Chambers, P. (2003) Magnesium and Potassium in Lone Atrial Fibrillation. The Magnesium Online Library. http://www.mgwater.com/laf.shtml
[101]  Chambers, P.W. (2007) Lone Atrial Fibrillation: Pathologic or Not? Medical Hypotheses, 68, 281-287. https://doi.org/10.1016/j.mehy.2006.07.030
[102]  Yeoh, Y.K., Zuo, T., Lui, G.C., et al. (2021) Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut, 70, 698-706. https://doi.org/10.1136/gutjnl-2020-323020
[103]  Clos-Garcia, M., Andrés-Marin, N., Fernández-Eulate, G., Abecia, L., Lavín, J.L., et al. (2019) Gut Microbiome and Serum Metabolome Analyses Identify Molecular Biomarkers and Altered Glutamate Metabolism in Fibromyalgia. EBioMedicine, 46, 499-511. https://doi.org/10.1016/j.ebiom.2019.07.031
[104]  Zhou, X., Baumann, R., Gao, X., Mendoza, M., Singh, S., et al. (2022) Gut Microbiome of Multiple Sclerosis Patients and Paired Household Healthy Controls Reveal Associations with Disease Risk and Course. Cell, 185, 3467-3486. https://doi.org/10.1016/j.cell.2022.08.021
[105]  Lupo, G.F.D., Rocchetti, G., Lucini, L., et al. (2021) Potential Role of Microbiome in Chronic Fatigue Syndrome/Myalgic Encephalomyelits (CFS/ME). Scientific Reports, 11, Article No. 7043. https://doi.org/10.1038/s41598-021-86425-6
[106]  Fu, Y., Wang, Y., Gao, H., Li, D.H. and Jiang, R.R. (2021) Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators of Inflammation, 2021, Article ID: 8879227. https://doi.org/10.1155/2021/8879227
[107]  Castro-Marrero, J., Zaragozá, M.C., Domingo, J.C., Martinez-Martinez, A. and Alegre, J. (2018) Low Omega-3 Index and Polyunsaturated Fatty Acid Status in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Prostaglandins Leukotrienes and Essential Fatty Acids, 139, 20-24. https://www.plefa.com/article/S0952-3278(18)30053-X/fulltext
[108]  Pellino, S., Luciano, M., Luciano, R., Mancini, E., Conte, M., Volpe, G. and Zerella, T. (2021) Long-COVID-19 Symptoms after Infection in COVID Long-Haulers. Open Journal of Epidemiology, 11, 473-482. https://doi.org/10.4236/ojepi.2021.114038
[109]  Swank, Z., Senussi, Y., Manickas-Hill, Z., Yu, X.G., Li, J.Z., et al. (2022) Persistent Circulating SARS-CoV-2 Spike Is Associated with Post-Acute COVID-19 Sequelae. Clinical Infectious Diseases, 2022, ciac722. https://doi.org/10.1093/cid/ciac722
[110]  Chambers, P. (2022) Ca:Mg D, the Shield that Interdicts the Crown Viruses and Vaccines. Open Access Library Journal, 9, e9249. https://www.scirp.org/journal/paperinformation.aspx?paperid=119926

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413