全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Study on the effect of Multiple Beds Operation Scheme for Performance Enhancement in Solar Heat-Driven Adsorption Chiller

DOI: 10.4236/oalib.1109317, PP. 1-10

Subject Areas: Industrial Engineering

Keywords: Adsorption Cooling, Heat Transfer, Solar Heat

Full-Text   Cite this paper   Add to My Lib

Abstract

The severity of the ozone layer destruction problem has called for rapid developments in environmentally friendly air conditioning technologies. Ongoing deregulatory efforts in the Organization for Economic Co-operation and Development (OECD) nations will ease the penetration of thermally activated heat pump systems. Absorption (liquid-vapor) and adsorption (solid-vapor) heat pump systems are thermally driven and have the advantage of being environmentally benign: both their ODP (Ozone Depletion Potential) and their GWP (Global Warming Potential) are zero. Adsorption cycles using silica gel-water as the adsorbent-refrigerant pairs have a distinct advantage over other systems in their ability to be driven by the heat of relatively low, near-ambient temperatures so that waste heat below 100°C can be recovered. The multi-bed multi-stage silica gel-water-based adsorption systems can be powered by low-temperature waste heat below 100°C, even as low as 50°C if the multi-stage regenerative scheme is adopted.

Cite this paper

Jahan, N. , Loskor, W. Z. and Khan, M. A. H. (2022). Study on the effect of Multiple Beds Operation Scheme for Performance Enhancement in Solar Heat-Driven Adsorption Chiller. Open Access Library Journal, 9, e9317. doi: http://dx.doi.org/10.4236/oalib.1109317.

References

[1]  Alam, K.C.A., Akahira, A., Hamamoto, Y., Akisawa, A. and Kashiwagi, T. (2004) A Four-Bed Mass Recovery Adsorption Refrigeration Cycle Driven by Low-Temperature Waste/Renewable Heat Source. Renewable Energy, 29, 1461-1475. https://doi.org/10.1016/j.renene.2004.01.011
[2]  Habib, K., Saha, B.B. and Koyama, S. (2014) Study of Various Adsorbent-Refrigerant Pairs for the Application of Solar Driven Adsorption Cooling in Tropical Climates. Applied Thermal Engineering, 72, 266-274. https://doi.org/10.1016/j.applthermaleng.2014.05.102
[3]  Chekirou, W., Boukheit, N. and Karaali, A. (2016) Heat Recovery Process in an Adsorption Refrigeration Machine. International Journal of Hydrogen Energy, 41, 7146-7157. https://doi.org/10.1016/j.ijhydene.2016.02.070
[4]  Vasiliev, L.L., Mishkinis, D.A., Antukh, A.A. and Vasiliev Jr., L.L. (2001) Solar-Gas Sorption Heat Pump. Applied Thermal Engineering, 21, 573-583. https://doi.org/10.1016/S1359-4311(00)00069-7
[5]  Wang, R.Z. (2001) Performance Improvement of Adsorption Cooling by Heat and Mass Recovery Operation. International Journal of Refrigeration, 24, 602-611. https://doi.org/10.1016/S0140-7007(01)00004-4
[6]  Critoph, R.E. (2001) Simulation of a Continuous Multiple-Bed Regenerative Adsorption Cycle. International Journal of Refrigeration, 24, 428-437. https://doi.org/10.1016/S0140-7007(00)00026-8
[7]  Chahbani, M.H., Labidi, J. and Paris, J. (2004) Modeling of Adsorption Heat Pumps with Regeneration. Applied Thermal Engineering, 24, 431-447. https://doi.org/10.1016/j.applthermaleng.2003.08.012
[8]  Chekirou, W., Boussehain, R., Feidt, M., Karaali, A. and Boukheit, N. (2011) Numerical Results on Operating Parameters Influence for a Heat Recovery Adsorption Machine. Energy Procedia, 6, 202-216. https://doi.org/10.1016/j.egypro.2011.05.024
[9]  Akahira, A., Alam, K.C.A., Hamamoto, Y., Akisawa, A. and Kashiwagi, T. (2004) Mass Recovery Adsorption Refrigeration Cycle—Improving Cooling Capacity. International Journal of Refrigeration, 27, 225-234. https://doi.org/10.1016/j.ijrefrig.2003.10.004
[10]  Khan, M.Z.I., Saha, B.B., Alam, K.C.A., Akisawa, A. and Kashiwagi, T. (2007) Study on Solar/Waste Heat Driven Multi-Bed Adsorption Chiller with Mass Recovery. Renewable Energy, 32, 365-381. https://doi.org/10.1016/j.renene.2006.02.003
[11]  Akahira, A., Alam, K.C.A., Hamamoto, Y., Akisawa, A. and Kashiwagi, T. (2005) Experimental Investigation of Mass Recovery Adsorption Refrigeration Cycle. International Journal of Refrigeration, 28, 565-572. https://doi.org/10.1016/j.ijrefrig.2004.10.001
[12]  Luo, H.L., Dai, Y.J., Wang, R.Z., Wu, J.Y., Xu, Y.X. and Shen, J.M. (2006) Experimental Investigation of a Solar Adsorption Chiller Used for Grain Depot Cooling. Applied Thermal Engineering, 26, 1218-1225. https://doi.org/10.1016/j.applthermaleng.2005.10.036
[13]  Wang, W., Qu, T.F. and Wang, R.Z. (2002) Influence of Degree of Mass Recovery and Heat Regeneration on Adsorption Refrigeration Cycles. Energy Conversion and Management, 43, 733-741. https://doi.org/10.1016/S0196-8904(01)00062-0
[14]  Qu, T.F., Wang, W. and Wang, R. Z. (2002) Study of the Effects of Mass and Heat Recovery on the Performances of Activated Carbon/Ammonia Adsorption Refrigeration Cycles. Journal of Solar Energy Engineering, 124, 283-290. https://doi.org/10.1115/1.1487883
[15]  Sward, B.K., Levan, M.D. and Meunier, F. (2000) Adsorption Heat Pump Modeling: the Thermal Wave Process with Local Equilibrium. Applied Thermal Engineering, 20, 759-780. https://doi.org/10.1016/S1359-4311(99)00051-4
[16]  Qasem, N.A. and El-Shaarawi, M.A. (2013) Improving Ice Productivity and Performance for an Activated Carbon/Methanol Solar Adsorption Ice-Maker. Solar Energy, 98, 523-542. https://doi.org/10.1016/j.solener.2013.10.018
[17]  Qasem, N.A. and El-Shaarawi, M.A. (2015) Thermal Analysis and Modeling Study of Activated Carbon Solar Adsorption Icemaker: Dhahran Case Study. Energy Conversion and Management, 100, 310-323. https://doi.org/10.1016/j.enconman.2015.04.054
[18]  Souissi, M., Guidara, Z. and Maalej, A. (2019) Experimental Study on a New Solar Refrigerator with Intermittent Adsorption Cycle. Energy for Sustainable Development, 49, 89-99. https://doi.org/10.1016/j.esd.2019.01.006
[19]  Meunier, F. (1985) Second Law Analysis of a Solid Adsorption Heat Pump Operating on Reversible Cascade Cycles: Application to the Zeolite-Water Pair. Heat Recovery System, 5, 133-141. https://doi.org/10.1016/0198-7593(85)90045-1
[20]  Akahira, A., Alam, K.C.A., Hamamoto, Y., Akisawa, A. and Kashiwagi, T. (2005) Mass Recovery Four-Bed Adsorption Refrigeration Cycle with Energy Cascading. Applied Thermal Engineering, 25, 1764-1778. https://doi.org/10.1016/j.applthermaleng.2004.10.006
[21]  Critoph, R.E. (1999) Adsorption Refrigerators and Heat Pumps. In: Burchell, T.D., Ed., Carbon Materials for Advanced Technologies, Pergamon, Tarrytown, 303-339. https://doi.org/10.1016/B978-008042683-9/50012-1
[22]  Habib, K., Saha, B.B., Chakraborty, A., Koyama, S. and Srinivasan, K. (2011) Performance Evaluation of Combined Adsorption Refrigeration Cycles. International Journal of Refrigeration, 34, 129-137. https://doi.org/10.1016/j.ijrefrig.2010.09.005
[23]  Meunier, F. (1986) Theoretical Performances of Solid Adsorbent Cascading Cycles Using the Zeolite-Water and Active Carbon-Methanol Pairs: Four Case Studies. Heat Recovery System, 6, 491-498. https://doi.org/10.1016/0198-7593(86)90042-1
[24]  Dawoud, B. (2007) A Hybrid Solar-Assisted Adsorption Cooling Unit for Vaccine Storage. Renewable Energy, 32, 947-964. https://doi.org/10.1016/j.renene.2006.02.018
[25]  Oliveira, R.G., Silveira Jr., V. and Wang, R.Z. (2006) Experimental Study of Mass Recovery Adsorption Cycles for Ice Making at Low Generation Temperature. Applied Thermal Engineering, 26, 303-311. https://doi.org/10.1016/j.applthermaleng.2005.04.021
[26]  Wang, J., Wang, L.W., Luo, W.L. and Wang, R.Z. (2013) Experimental Study of a Two-Stage Adsorption Freezing Machine Driven by Low Temperature Heat Source. International Journal of Refrigeration, 36, 1029-1036. https://doi.org/10.1016/j.ijrefrig.2012.10.029
[27]  Jiang, L., Wang, L.W., Wang, R.Z., Gao, P. and Song, F.P. (2014) Investigation on Cascading Cogeneration System of ORC (Organic Rankine Cycle) and CaCl2/BaCl2 Two Stage Adsorption Freezer. Energy, 71, 377-387. https://doi.org/10.1016/j.energy.2014.04.078
[28]  Wirajati, G.A.B., Ueda, Y., Akisawa, A. and Miyazaki, T. (2015) Cycle Optimization on Re-Heat Adsorption Cycle Applying Fixed Chilled Water Outlet Temperature. Heat Transfer Engineering, 37, 606-615. https://doi.org/10.1080/01457632.2015.1066650
[29]  Dakkama, H.K., Elsayed, A., Al-Dadah, R.K., Mahmoud, S.M. and Youssef, P. (2017) Integrated Evaporator Condenser Cascaded Adsorption System for Low Temperature Cooling Using Different Working Pairs. Applied Energy, 185, 2117-2126. https://doi.org/10.1016/j.apenergy.2016.01.132
[30]  Alam, K.C.A., Saha, B.B. and Akisawa, A. (2013) Adsorption Cooling Driven by Solar Collector: A Case Study for Tokyo Solar Data. Applied Thermal Engineering, 50, 1603-1609. https://doi.org/10.1016/j.applthermaleng.2011.09.028
[31]  Rouf, R.A., Alam, K.C.A., Saha, B.B. and Kabir, K.M.A. (2018) Utilizing Accessible Heat Enhancing Cooling Effect with Three Bed Solar Adsorption Chiller. Heat Transfer Engineering, 40, 1049-1059. https://doi.org/10.1080/01457632.2018.1451244
[32]  Rouf, R.A., Khan, M.A., Kabir, K.A. and Saha, B.B. (2016) Energy Management and Heat Storage for Solar Adsorption Cooling. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 3, 1-10. https://doi.org/10.5109/1800866

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413