全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Role of Three Bands on Coexistence of Superconductivity and Antiferromagnetism in Samarium Iron Pnictide Superconductor

DOI: 10.4236/oalib.1109181, PP. 1-15

Subject Areas: Condensed State Physics

Keywords: Superconductivity, Antiferromagnetism, Superconducting Order Parameter, Magnetic Order Parameter

Full-Text   Cite this paper   Add to My Lib

Abstract

The coexistence of long range magnetic order and superconductivity in the iron pnictide superconductor SmFeAsO1-xFx is the basis for the present study that analyses theoretically the role of multiple bands on the coexistence of superconductivity (SC) and antiferromagnetism (AFM). For this, a model Hamiltonian is developed and using Green’s function technique, expressions for TC, TM and magnetic order parameter η are obtained. For one band, two band and three band models separately, variation of TC, TM with η is studied. Further, the coexistence region has been extracted using the above information. The results show that superconducting and AFM order can coexist in this class of superconductors and increasing the number of bands increases the coexistence region.

Cite this paper

Masih, S. , Masih, P. and Khandka, S. (2022). Role of Three Bands on Coexistence of Superconductivity and Antiferromagnetism in Samarium Iron Pnictide Superconductor. Open Access Library Journal, 9, e9181. doi: http://dx.doi.org/10.4236/oalib.1109181.

References

[1]  Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T. and Hosono, H. (2006) Iron-Based Layered Superconductor: LaOFeP. Journal of the American Chemical Society, 128, 10012-10013. https://doi.org/10.1021/ja063355c
[2]  Kamihara, Y., Watanabe, T., Hirano, M. and Hosono, H. (2008) Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05 - 0.12) with Tc = 26K. Journal of the American Chemical Society, 130, 3296-3297. https://doi.org/10.1021/ja800073m
[3]  Johnston, D.C. (2010) The Puzzle of High Temperature Superconductivity in Layered Iron Pnictides and Chalcogenides. Advances in Physics, 59, 803-1061. https://doi.org/10.1080/00018732.2010.513480
[4]  Bednorz, J.G. and Müller, K.A. (1986) Possible High Tc Superconductivity in the Ba-La-Cu-O System. Zeitschrift für Physik B, 64, 189-193. https://doi.org/10.1007/BF01303701
[5]  Ren, Z.A., Lu, W., Yang, J., et al. (2008) Superconductivity at 55K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx]FeAs. Chinese Physics Letters, 25, 2215-2216. https://doi.org/10.1088/0256-307X/25/6/080
[6]  Chen, X., Dai, P., Feng, D., Xiang, T. and Zhang, F.C. (2014) Iron-Based High Transition Temperature Superconductors. National Science Review, 1, 371-395. https://doi.org/10.1093/nsr/nwu007
[7]  Oh, H., Moon, J., Shin, D., Moon, C.-Y. and Choi, H.J. (2011) Brief Review on Iron-Based Superconductors: Are There Clues for Unconventional Superconductivity? Progress in Superconductivity, 84, 65-84.
[8]  Tytarenko, A., Nakatsukasa, K., Huang, Y.K., Johnston, S. and Van Heumen, E. (2016) From Bad Metal to Kondo Insulator: Temperature Evolution of the Optical Properties of SmB6. New Journal of Physics, 18, Article ID: 123003. https://doi.org/10.1088/1367-2630/18/12/123003
[9]  Nakajima, M., Ishida, S., Tanaka, T., Kihou, K., Tomioka, Y., Saito, T., Lee, C.H., Fukazawa, H., Kohori, Y., Kakeshita, T., Iyo, A., Ito, T., Eisaki, H. and Uchida, S.I. (2014) Strong Electronic Correlations in Iron Pnictides: Comparison of Optical Spectra for BaFe2As2-Related Compounds. Journal of the Physical Society of Japan, 83, Article ID: 104703. https://doi.org/10.7566/JPSJ.83.104703
[10]  Yi, W., Sun, L., Ren, Z., Lu, W., Dong, X., Zhang, H.J., Dai, X., Fang, Z., Li, Z., Che, G., Yang, J., Shen, X., Zhou, F. and Zhao, Z. (2008) Pressure Effect on Superconductivity of Iron-Based Arsenic-Oxide ReFeAsO0.85 (Re = Sm and Nd). Euro-physics Letters, 83, Article No. 57002. https://doi.org/10.1209/0295-5075/83/57002
[11]  Kobayashi, K., Yamaura, J.I., Iimura, S., Maki, S., Sagayama, H., Kumai, R., Murakami, Y., Takahashi, H., Matsuishi, S. and Hosono, H. (2016) Pressure Effect on Iron-Based Superconductor LaFeAsO1-xHx: Peculiar Response of 1111-Type Structure. Scientific Reports, 6, Article No. 39646. https://doi.org/10.1038/srep39646
[12]  Wang, A.F., Xiang, Z.J., Ying, J.J., Yan, Y.J., Cheng, P., Ye, G.J., Luo, X.G. and Chen, X.H. (2012) Pressure Effects on the Superconducting Properties of Single-Crystalline Co-Doped NaFeAs. New Journal of Physics, 14, Article ID: 113043. https://doi.org/10.1088/1367-2630/14/11/113043
[13]  Igawa, K., Okada, H., Takahashi, H., Matsuishi, S., Kamihara, Y., Hirano, M., Hosono, H., Matsubayashi, K. and Uwatoko, Y. (2009) Pressure-Induced Superconductivity in Iron Pnictide Compound SrFe2As2. Journal of the Physical Society of Japan, 78, 5-6. https://doi.org/10.1143/JPSJ.78.025001
[14]  Ye, Z.R., Zhang, Y., Xie, B.P. and Feng, D.L. (2013) Angle-Resolved Photoemission Spectroscopy Study on Iron-Based Superconductors. Chinese Physics B, 22, Article ID: 087407. https://doi.org/10.1088/1674-1056/22/8/087407
[15]  Laad, M.S. and Craco, L. (2009) Theory of Multiband Superconductivity in Iron Pnictides. Physical Review Letters, 103, Article ID: 017002. https://doi.org/10.1103/PhysRevLett.103.017002
[16]  Nomura, T. (2008) Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models. Journal of the Physical Society of Japan, 77, 123-124. https://doi.org/10.1143/JPSJS.77SC.123
[17]  Hu, J., Liu, T.J., Qian, B., Rotaru, A., Spinu, L. and Mao, Z.Q. (2011) Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal. Physical Review B, 83, Article ID: 134521. https://doi.org/10.1103/PhysRevB.83.134521
[18]  Terashima, K., Sekiba, Y., Bowen, J.H., Nakayama, K., Kawahara, T., Sato, T., Richard, P., Xu, Y.M., Li, L.J., Cao, G.H., Xu, Z.A., Ding, H. and Takahashi, T. (2009) Fermi Surface Nesting Induced Strong Pairing in Iron-Based Superconductors. Proceedings of the National Academy of Sciences of the United States of America, 106, 7330-7333. https://doi.org/10.1073/pnas.0900469106
[19]  Ajay, R.L. (2013) Electronic Spectra of Iron Pnictide Superconductors: Influence of Multi-Orbitals Hopping and Hund’s Coupling. Journal of Superconductivity and Novel Magnetism, 26, 527-538. https://doi.org/10.1007/s10948-012-1780-1
[20]  Podolsky, D. (2012) Untangling the Orbitals in Iron-Based Superconductors. Physics (College. Park. Md), 5, 61. https://doi.org/10.1103/Physics.5.61
[21]  Raghu, S., Qi, X.L., Liu, C.X., Scalapino, D.J. and Zhang, S.C. (2008) Minimal Two-Band Model of the Superconducting Iron Oxypnictides. Physical Review B: Condensed Matter and Materials Physics, 77, Article ID: 220503. https://doi.org/10.1103/PhysRevB.77.220503
[22]  Frank, S.S., Kumar, A., Khandka, S. and Masih, S. (2015) Thermodynamical Properties of LiFeAs Superconductor Using Two Band Model. International Journal of Engineering Sciences & Research Technology, 4, 480-487.
[23]  Nuwal, A., Kakani, S. and Kakani, S.L. (2014) Two Band Model for the Iron Based Superconductors. Indian Journal of Pure & Applied Physics, 52, 411-422.
[24]  Maksimov, E.G., Karakozov, A.E., Gorshunov, B.P., Prokhorov, A.S., Voronkov, A.A., Zhukova, E.S., Nozdrin, V.S., Zhukov, S.S., Wu, D., Dressel, M., Haindl, S., Iida, K. and Holzapfel, B. (2011) Two-Band Bardeen-Cooper-Schrieffer Superconducting State of the Iron Pnictide Compound Ba(Fe0.9Co0.1)2As2. Physical Review B: Condensed Matter and Materials Physics, 83, Article ID: 140502.
[25]  Stanev, V. and Tešanović, Z. (2010) Three-Band Superconductivity and the Order Parameter That Breaks Time-Reversal Symmetry. Physical Review B: Condensed Matter and Materials Physics, 81, Article ID: 134522. https://doi.org/10.1103/PhysRevB.81.134522
[26]  Daghofer, M., Nicholson, A., Moreo, A. and Dagotto, E. (2010) Three Orbital Model for the Iron-Based Superconductors. Physical Review B: Condensed Matter and Materials Physics, 81, Article ID: 014511. https://doi.org/10.1103/PhysRevB.81.014511
[27]  Lee, P.A. and Wen, X.G. (2008) Spin-Triplet p-Wave Pairing in a Three-Orbital Model for Iron Pnictide Superconductors. Physical Review B: Condensed Matter and Materials Physics, 78, Article ID: 144517. https://doi.org/10.1103/PhysRevB.78.144517
[28]  Ummarino, G.A., Tortello, M., Daghero, D. and Gonnelli, R.S. (2009) Three-Band s± Eliashberg Theory and the Superconducting Gaps of Iron Pnictides. Physical Review B: Condensed Matter and Materials Physics, 80, Article ID: 172503. https://doi.org/10.1103/PhysRevB.80.172503
[29]  Benfatto, L., Capone, M., Caprara, S., Castellani, C. and Di Castro, C. (2008) Multiple Gaps and Superfluid Density from Interband Pairing in a Four-Band Model of the Iron Oxypnictides. Physical Review B: Condensed Matter and Materials Physics, 78, 140502(R). https://doi.org/10.1103/PhysRevB.78.140502
[30]  Singh, D.J. (2012) Magnetism and Superconductivity in Iron Pnictides. Acta Physica Polonica A, 121, 999-1004. https://doi.org/10.12693/APhysPolA.121.999
[31]  Vorontsov, A.B., Vavilov, M.G. and Chubukov, A.V. (2009) Interplay between Magnetism and Superconductivity in the Iron Pnictides. Physical Review B: Condensed Matter and Materials Physics, 79, 060508(R). https://doi.org/10.1103/PhysRevB.79.060508
[32]  Kordyuk, A.A. (2012) Iron-Based Superconductors: Magnetism, Superconductivity, and Electronic Structure. Low Temperature Physics, 38, 888-899. https://doi.org/10.1063/1.4752092
[33]  Zhigadlo, N.D., Weyeneth, S., Katrych, S., Moll, P.J.W., Rogacki, K., Bosma, S., Puzniak, R., Karpinski, J. and Batlogg, B. (2012) High-Pressure Flux Growth, Structural, and Superconducting Properties of LnFeAsO (Ln = Pr, Nd, Sm) Single Crystals. Physical Review B: Condensed Matter and Materials Physics, 86, Article ID: 214509.
[34]  Fernandes, R.M., Pratt, D.K., Tian, W., Zarestky, J., Kreyssig, A., Nandi, S., Kim, M.G., Thaler, A., Ni, N., Canfield, P.C., McQueeney, R.J., Schmalian, J. and Goldman, A.I. (2010) Unconventional Pairing in the Iron Arsenide Superconductors. Physical Review B: Condensed Matter and Materials Physics, 81, 29-33. https://doi.org/10.1103/PhysRevB.81.140501
[35]  Lu, X.F., Wang, N.Z., Wu, H., Wu, Y.P., Zhao, D., Zeng, X.Z., Luo, X.G., Wu, T., Bao, W., Zhang, G.H., Huang, F.Q., Huang, Q.Z. and Chen, X.H. (2015) Coexistence of Superconductivity and Antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nature Materials, 14, 325-329. https://doi.org/10.1038/nmat4155
[36]  Mebrahtu, A. and Singh, P. (2015) Coexistence of Superconductivity and Antiferromagnetism in SmAsO1-xFxFe. World Journal of Condensed Matter Physics, 5, 138-147. https://doi.org/10.4236/wjcmp.2015.53016
[37]  Afrassa, M.A. and Singh, P. (2014) Theoretical Study of the Interplay of Superconductivity and Magnetism in FeAs Based Superconductors. World Journal of Condensed Matter Physics, 4, 53-57. https://doi.org/10.4236/wjcmp.2014.42008
[38]  Desta, T., Kahsay, G. and Singh, P. (2017) Theoretical Analyses of Superconductivity in Iron Based Superconductor Ba1-xKxFe2As2. Momona Ethiopian Journal of Science, 9, 134. https://doi.org/10.4314/mejs.v9i2.1
[39]  Singh, P. (2011) Coexistence of Superconductivity and Ferromagnetism. Journal of Superconductivity and Novel Magnetism, 24, 945-949. https://doi.org/10.1007/s10948-010-0889-3
[40]  Masih, S., Masih, P. and Khandka, S. (2018) Coexistence of Superconducting and Magnetic Order in One Band and Two Band SmOFeAs Superconductor. Journal of Emerging Technologies and Innovative Research (JETIR), 5, 432-437.
[41]  Zubarev, D.N. (1960) Double-Time Green Functions in Statistical Physics. Soviet Physics Uspekhi, 3, 320-345. https://doi.org/10.1070/PU1960v003n03ABEH003275
[42]  Ryan, D.H., Cadogan, J.M., Ritter, C., Canepa, F., Palenzona, A. and Putti, M. (2009) Coexistence of Long-Ranged Magnetic Order and Superconductivity in the Pnictide Superconductor SmFeAsO1-xFx (x = 0, 0.15). Physical Review B: Condensed Matter and Materials Physics, 80, 220503(R). https://doi.org/10.1103/PhysRevB.80.220503
[43]  Boeri, L., Calandra, M., Mazin, I.I., Dolgov, O.V. and Mauri, F. (2010) Effects of Magnetism and Doping on the Electron-Phonon Coupling in BaFe2As2. Physical Review B: Condensed Matter and Materials Physics, 82, 020506(R). https://doi.org/10.1103/PhysRevB.82.020506
[44]  Drew, A.J., Niedermayer, C., Baker, P.J., Pratt, F.L., Blundell, S.J., Lancaster, T., Liu, R.H., Wu, G., Chen, X.H., Watanabe, I., Malik, V.K., Dubroka, A., Rössle, M., Kim, K.W., Baines, C. and Bernhard, C. (2009) Coexistence of Static Magnetism and Superconductivity in SmFeAsO1-xFx as Revealed by Muon Spin Rotation. Nature Materials, 8, 310-314. https://doi.org/10.1038/nmat2396
[45]  Fernandes, R.M., Vavilov, M.G. and Chubukov, A.V. (2012) Enhancement of Tc by Disorder in Underdoped Iron Pnictide Superconductors. Physical Review B: Condensed Matter and Materials Physics, 85, 140512(R). https://doi.org/10.1103/PhysRevB.85.140512
[46]  Ding, L., He, C., Dong, J.K., Wu, T., Liu, R.H., Chen, X.H. and Li, S.Y. (2008) Specific Heat of the Iron-Based High-Tc Superconductor SmO1-xFxFeAs. Physical Review B: Condensed Matter and Materials Physics, 77, 180510(R).
[47]  Masih, S., Masih, P. and Khandka, S. (2022) Theoretical Study on the Effect of Multiband Structure on Critical Temperature and Electronic Specific Heat in SmOFeAs Iron Pnictide Superconductor. Journal of Applied Mathematics and Physics, 10, 2232-2244. https://doi.org/10.4236/jamp.2022.107153

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413