全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Long Covid, Short Magnesium

DOI: 10.4236/oalib.1108736, PP. 1-25

Subject Areas: Pathology

Keywords: Gamma Interferon, Bradykinin, Asthma, IgG3, C1-Inhibitor, Receptor Tyrosine Kinases

Full-Text   Cite this paper   Add to My Lib

Abstract

Long Covid, now also reported in children, has become increasingly alarming. Perhaps a third of those who develop MIS-C go on to experience Long Covid. Etiology is elusive. The role of vitamin D in bone and immune health has been recognized but magnesium deficiency has escaped attention. A physiologic and biochemical argument for its culpability in Long Covid as well Chronic Fatigue Syndrome, Fibromyalgia, Epstein Barr Virus, and Cytomegalovirus is discussed.

Cite this paper

Chambers, P. W. (2022). Long Covid, Short Magnesium. Open Access Library Journal, 9, e8736. doi: http://dx.doi.org/10.4236/oalib.1108736.

References

[1]  Hollis, B.W. (2005) Circulating 25-Hydroxyvitamin D Levels Indicative of Vitamin D Sufficiency: Implications for Establishing a New Effective Dietary Intake Recommendation for Vitamin D. The Journal of Nutrition, 135, 317-322. https://doi.org/10.1093/jn/135.2.317
[2]  Workinger, J.L., Doyle, R.P. and Bortz, J. (2018) Challenges in the Diagnosis of Magnesium Status. Nutrients, 10, Article No. 1202. https://doi.org/10.3390/nu10091202
[3]  Cheung, M.M., DeLuccia, R., Ramadoss, R.K., Aljahdali, A., Volpe, S.L., Shewokis, P.A. and Sukumar, D. (2019) Low Dietary Magnesium Intake Alters Vitamin D-Parathyroid Hormone Relationship in Adults Who Are Overweight or Obese. Nutrition Research, 69, 82-93. https://doi.org/10.1016/j.nutres.2019.08.003
[4]  Ekwaru, J.P., Zwicker, J.D., Holick, M.F., Giovannucci, E. and Veugelers, P.J. (2014) The Importance of Body Weight for the Dose Response Relationship of Oral Vitamin D Supplementation and Serum 25-Hydroxyvitamin D in Healthy Volunteers. PLoS ONE, 9, Article ID: e111265. https://doi.org/10.1371/journal.pone.0111265
[5]  Ames, B.N. (2006) The “Triage Theory”: Micronutrient Deficiencies Cause Insidious Damage That Accelerates Age-associated Chronic Disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 17589-17594. https://doi.org/10.1073/pnas.0608757103 http://www.bruceames.org/Triage.pdf
[6]  Guerrero-Romero, F., Mercado, M., Rodriguez-Moran, M., Ramírez-Renteria, C., Martínez-Aguilar, G., Marrero-Rodríguez, D., et al. (2022) Magnesium-to-Calcium Ratio and Mortality from COVID-19. Nutrients, 14, Article No. 1686. https://doi.org/10.3390/nu14091686
[7]  de Baaij Jeroen, H.F., Hoenderop, J.G.J. and Bindels, R.J.M. (2015) Magnesium in Man: Implications for Health and Disease. Physiological Reviews, 95, 1-46. https://doi.org/10.1152/physrev.00012.2014
[8]  Hosseini, A., Esmaeili Gouvarchin Ghaleh, H., Aghamollaei, H., Fasihi Ramandi, M., Alishiri, G., Shahriary, A., Hassanpour, K., Tat, M. and Farnoosh, G. (2021). Evaluation of Th1 and Th2 Mediated Cellular and Humoral Immunity in Patients with COVID-19 Following the Use of Melatonin as an Adjunctive Treatment. European Journal of Pharmacology, 904, Article ID: 174193. https://doi.org/10.1016/j.ejphar.2021.174193
[9]  Zou, Z.-G., Rios, F.J., Montezano, A.C. and Touyz, R.M. (2019) TRPM7, Magnesium, and Signaling. International Journal of Molecular Sciences, 20, Article No. 1877. https://doi.org/10.3390/ijms20081877
[10]  Stefano Iotti, S., Wolf, F., Mazur, A. and Maier, J.A. (2020) The COVID-19 Pandemic: Is There a Role for Magnesium? Hypotheses and Perspectives. Magnesium Research, 33, 21-27. https://doi.org/10.1684/mrh.2020.0465
[11]  Kim, M.H., Salloum, S., Wang, J.Y., Wong, L.P., Regan, J., Lefteri, K., Manickas-Hill, Z., Gao, C., Li, J.Z., Sadreyev, R.I., Yu, X.G. and Chung, R.T. (2021) Type, I., II, and III Interferon Signatures Correspond to Coronavirus Disease 2019 Severity. The Journal of Infectious Diseases, 224, 777-782. https://doi.org/10.1093/infdis/jiab288
[12]  Taylor, A., Foo, S.-S., Bruzzone, R., Vu Dinh, L., King, N.J.C. and Mahalingam, S. (2015) Fc Receptors in Antibody-Dependent Enhancement of Viral Infections. Immunological Reviews, 268, 340-364. https://doi.org/10.1111/imr.12367
[13]  Goletti, D., Petrone, L., Manissero, D., Bertoletti, A., Rao, S., Ndunda, N., Sette, A., Nikolayevskyy, V., et al. (2021) The Potential Clinical Utility of Measuring Severe Acute Respiratory Syndrome Coronavirus 2-Specific T-Cell Responses. Clinical Microbiology and Infection, 27, 1784-1789. https://doi.org/10.1016/j.cmi.2021.07.005
[14]  Ling, N., Cheng, M.-L., Feng, Y., Zhao, H., Liu, J., Ye, F., et al. (2022) Impaired Cellular Immunity to SARS-CoV-2 in Severe COVID-19 Patients. Frontiers in Immunology, 12, Article ID: 603563. https://doi.org/10.3389/fimmu.2021.603563
[15]  Cervia, C., Zurbuchen, Y., Taeschler, P., Ballouz, T., Menges, D., Hasler, S., et al. (2022) Immunoglobulin Signature Predicts Risk of Post-Acute COVID-19 Syndrome. Nature Communications, 13, Article No. 446. https://doi.org/10.1038/s41467-021-27797-1
[16]  Luo, H., Jia, T., Chen, J., Zeng, S., Qiu, Z., Wu, S., Li, X., Lei, Y., et al. (2021) The Characterization of Disease Severity Associated IgG Subclasses Response in COVID-19 Patients. Frontiers in Immunology, 12, Article ID: 632814. https://doi.org/10.3389/fimmu.2021.632814
[17]  Morales-Núñez, J.J., Muñoz-Valle, J.F., Torres-Hernández, P.C. and Hernández-Bello, J. (2021) Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines, 9, Article No. 1376. https://doi.org/10.3390/vaccines9121376
[18]  Palacios-Gutiérreza, J.J., Rodríguez-Guardadob, A., Arias-Guillénc, M., Alonso-Ariasd, R., Palacios-Penedoe, S., García-Garcíaf, J.-M., et al. (2022) Clinical and Epidemiological Correlates of Low IFN-gamma Responses in Mitogen Tube of QuantiFERON Assay in Tuberculosis Infection Screening during the COVID-19 Pandemic: A Population-Based Marker of COVID-19 Mortality? Archivos de Bronconeumología. (In Press). https://doi.org/10.1016/j.arbres.2022.01.011 https://archbronconeumol.org/en-clinical-epidemiological-correlates-low-ifn-gamma-avance-S0300289622000825
[19]  Borekci, S., Karakas, F.G., Sirekbasan, S., Kubat, B., Karaali, R., et al. (2021) The Relationship between Pre-Pandemic Interferon Gamma Release Assay Test Results and COVID-19 Infection: Potential Prognostic Value of Indeterminate IFN-γ Release Assay Results. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, Article ID: 1989277, 9 p. https://doi.org/10.1155/2021/1989277
[20]  Löbel, M., Mooslechner, A.A., Bauer, S., Günther, S., Letsch, A., Hanitsch, L.G., et al. (2015) Polymorphism in COMT Is Associated with IgG3 Subclass Level and Susceptibility to Infection in Patients with Chronic Fatigue Syndrome. Journal of Translational Medicine, 13, Article No. 264. https://doi.org/10.1186/s12967-015-0628-4
[21]  Hilgers, A. and Frank, J. (1994) Chronic Fatigue Syndrome: Immune Dysfunction, Role of Pathogens and Toxic Agents and Neurological and Cardiac Changes. Wiener Medizinische Wochenschrift, 144, 399-406. http://www.ncbi.nlm.nih.gov/pubmed/7856214
[22]  Lotz, M., and Zuraw, B.L. (1987) IFN-γ Is a Major Regulator of C1-inhibitor Synthesis by Human Blood Monocytes. The Journal of Immunology, 139, 3382-3387. https://pubmed.ncbi.nlm.nih.gov/3119706/
[23]  Zuraw, B.L. and Lotz, M. (1990) Regulation of the Hepatic Synthesis of C1 Inhibitor by the Hepatocyte Stimulating Factors Interleukin 6 and Interferon Gamma. Journal of Biological Chemistry, 265, 12664-12670. https://doi.org/10.1016/S0021-9258(19)38395-4 https://pubmed.ncbi.nlm.nih.gov/1695634/
[24]  Bossi, F., Peerschke, E.I., Ghebrehiwet, B. and Tedesco, F. (2011) Cross-Talk between the Complement and the Kinin System in Vascular Permeability. Immunology Letters, 140, 7-13. https://doi.org/10.1016/j.imlet.2011.06.006
[25]  Hewison, M. (2010) Vitamin D and the Immune System: New Perspectives on an Old Theme. Endocrinology and Metabolism Clinics of North America, 39, 365-379. https://doi.org/10.1016/j.ecl.2010.02.010
[26]  Maalmi, H., Berraïes, A., Tanguouru, E., Ammar, J., Abid, H., Hamzaoui, K. and Hamzaoui, A. (2012) The Impact of Vitamin D Deficiency on Immune T Cells in Asthmatic Children: A Case-Control Study. Journal of Asthma and Allergy, 5, 11-19. https://doi.org/10.2147/JAA.S29566
[27]  Hamzaoui, A., Berraïes, A., Hamdi, B., Kaabachi, W., Ammar, J. and Hamzaoui, K. (2014) Vitamin D Reduces the Differentiation and Expansion of Th17 Cells in Young Asthmatic Children. Immunobiology, 219, 873-879. https://doi.org/10.1016/j.imbio.2014.07.009
[28]  Zhu, Z., Hasegawa, K., Ma, B., Fujiogi, M., Camargo Jr., C.A. and Liang, L. (2020) Association of Asthma and Its Genetic Predisposition with the Risk of Severe COVID-19. Journal of Allergy and Clinical Immunology, 146, 327-329.E4. https://doi.org/10.1016/j.jaci.2020.06.001
[29]  Ferastraoaru, D., Hudes, G., Jerschow, E., Jariwala, S., Karagic, M., De Vos, G., Rosenstreich, D. and Ramesh M. (2021) Eosinophilia in Asthma Patients Is Protective Against Severe COVID-19 Illness. The Journal of Allergy and Clinical Immunology, 9, 1152-1162.E3. https://doi.org/10.1016/j.jaip.2020.12.045
[30]  Shaikh, M.N., Malapati, B.R., Gokani, R., Patel, B. and Chatriwala, M. (2016) Serum Magnesium and Vitamin D Levels as Indicators of Asthma Severity. Pulmonary Medicine, 2016, Article ID: 1643717. https://doi.org/10.1155/2016/1643717
[31]  Hu, Z.J., Xu, J., Yin, J.M., Li, L, Hou, W., Zhang, L.L., et al. (2020) Lower Circulating Interferon-Gamma Is a Risk Factor for Lung Fibrosis in COVID-19 Patients. Frontiers in Immunology, 11, Article ID: 585647. https://doi.org/10.3389/fimmu.2020.585647
[32]  Abdel-Hamed, E.F., Ibrahim, M.N., Mostafa, N.E., Moawad, H.S.F., Elgammal, N.E., Darwiesh, E.M., et al. (2021) Role of Interferon Gamma in SARS-CoV2 Positive Patients with Parasitic Infections. Gut Pathogens, 13, Article No. 29. https://doi.org/10.1186/s13099-021-00427-3
[33]  Sapkota, H.R. and Nune, A. (2022) Long COVID from Rheumatology Perspective—A Narrative Review. Clinical Rheumatology, 41, 337-348. https://doi.org/10.1007/s10067-021-06001-1
[34]  Nabi-Afjadi, M., Karami, H., Goudarzi, K., Alipourfard, I. and Bahreini, E. (2021) The Effect of Vitamin, D., Magnesium and Zinc Supplements on Interferon Signaling Pathways and Their Relationship to Control SARS-CoV-2 Infection. Clinical and Molecular Allergy, 19, Article No. 21. https://doi.org/10.1186/s12948-021-00161-w
[35]  Porritt, R.A., Binek, A., Paschold, L., Rivas, M.N., McArdle, A., Yonker, L.M., et al. (2021) The Autoimmune Signature of Hyperinflammatory Multisystem Inflammatory Syndrome in Children. Journal of Clinical Investigation, 131, Article ID: e151520. https://doi.org/10.1172/JCI151520
[36]  Rubin, L., Subramony, A. and Kothare, S. (2022) Patients Diagnosed with Multisystem Inflammatory Syndrome in Children Have Persistent Neurologic, Sleep, and Psychiatric Symptoms after Hospitalization. Journal of Child Neurology, 37, 426-433. https://doi.org/10.1177/08830738221075924
[37]  Zimmermann, P., Pittet, L.F. and Curtis, N. (2021) How Common Is Long COVID in Children and Adolescents? The Pediatric Infectious Disease Journal, 40, e482-e487. https://doi.org/10.1097/INF.0000000000003328
[38]  Cooper, S.L., Boyle, E., Jefferson, S.R., Heslop, C.R.A., Mohan, P., Mohanraj, G.G.J., et al. (2021) Role of the Renin-Angiotensin-Aldosterone and Kinin-Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID. International Journal of Molecular Sciences, 22, Article No. 8255. https://doi.org/10.3390/ijms22158255
[39]  Cyr, M., Lepage, Y., Blais Jr., C., Gervais, N., Cugno, M., Rouleau, J-L. and Adam, A. (2001) Bradykinin and Des-Arg9-bradykinin Metabolic Pathways and Kinetics of Activation of Human Plasma. American Journal of Physiology—Heart and Circulatory Physiology, 281, H275-H283. https://doi.org/10.1152/ajpheart.2001.281.1.H275
[40]  Gallagher, P.E., Li, P., Lenhart, J.R., Chappell, M.C. and Brosnihan, K.B. (1999) Estrogen Regulation of Angiotensin-Converting Enzyme mRNA. Hypertension, 33, 323-328. https://doi.org/10.1161/01.HYP.33.1.323
[41]  Schwaninger, M., Sallmann, S., Petersen, N., Schneider, A., Prinz, S., Libermann, T.A. and Spranger, M. (1999) Bradykinin Induces Interleukin-6 Expression in Astrocytes through Activation of Nuclear Factor-κB. Journal of Neurochemistry, 73, 1461-1466. https://doi.org/10.1046/j.1471-4159.1999.0731461.x
[42]  Bas, M., Hoffmann, T.K., Tiemann, B., Dao, V.T.V., Bantis, C., Balz, V., Schultz-Coulon, H.-J., Stark, T., et al. (2010) Potential Genetic Risk Factors in Angiotensin-Converting Enzyme-Inhibitor-Induced Angio-Oedema. British Journal of Clinical Pharmacology, 69, 179-186. https://doi.org/10.1111/j.1365-2125.2009.03567.x
[43]  Biller, H., Zissel, G., Ruprecht, B., Nauck, M., Busse Grawitz, A. and Müller-Quernheim, J. (2006) Genotype-Corrected Reference Values for Serum Angiotensin-Converting Enzyme. European Respiratory Journal, 28, 1085-1091. https://doi.org/10.1183/09031936.00050106
[44]  Rigat, B., Corvol, P. and Soubrier, F. (1990) An Insertion/Deletion Polymorphism in the Angiotensin I Converting Enzyme Gene Accounting for Half the Variance of Serum Enzyme Levels. Journal of Child Neurology, 86, 1343-1346. https://doi.org/10.1172/JCI114844
[45]  Gallego-Delgado, J., Walther, T. and Rodriguez, A. (2016) The High Blood Pressure-Malaria Protection Hypothesis. Circulation Research, 119, 1071-1075. https://doi.org/10.1161/CIRCRESAHA.116.309602
[46]  Graham, E.L., Clark, J.R., Orban, Z.S., Lim, P.H., Szymanski, A.L., et al, (2021) Persistent Neurologic Symptoms and Cognitive Dysfunction in Non Hospitalized Covid19 Long Haulers. Annals of Clinical and Translational Neurology, 8, 1073-1085. https://doi.org/10.1002/acn3.51350
[47]  Teuwen, L.A., Geldhof, V., Pasut, A. and Carmeliet, P. (2020) COVID-19: The Vasculature Unleashed. Nature Reviews Immunology, 20, 389-391. https://doi.org/10.1038/s41577-020-0343-0
[48]  Puthucheary, Z., Skipworth, J.R.A., Rawal, J., Loosemore, M., Van Someren, K. and Montgomery, H.E. (2011) The ACE Gene and Human Performance. Sports Medicine, 41, 433-448. https://doi.org/10.2165/11588720-000000000-00000
[49]  Chambers, P.W. (2022) COVID-19: From Cough to Coffin. Open Access Library Journal, 9, 1-24. https://doi.org/10.4236/oalib.1108300
[50]  Java, A., Apicelli, A.J., Liszewski, K., Coler-Reilly, A., Atkinson, J.P., Kim, A.H.J. and Kulkarni, H.S. (2020) The Complement System in COVID-19: Friend and Foe? JCI Insight, 5, Article ID: e140711. https://doi.org/10.1172/jci.insight.140711
[51]  Bekassy, Z., Lopatko Fagerström, I., Bader, M., et al. (2021) Crosstalk between the Rennin-angiotensin, Complement and Kallikrein-Kinin Systems in Inflammation. Nature Reviews Immunology. https://doi.org/10.1038/s41577-021-00634-8
[52]  Schoenborn, J.R. and Wilson, C.B. (2007) Regulation of Interferon-γ During Innate and Adaptive Immune Responses. Advances in Immunology, 96, 41-101. https://doi.org/10.1016/S0065-2776(07)96002-2
[53]  Bellmann-Weiler, R., Schroecksnadel, K., Holzer, C., Larcher, C., Fuchs, D. and Weiss, G. (2008) IFN-gamma Mediated Pathways in Patients with Fatigue and Chronic Active Epstein Barr Virus-Infection. Journal of Affective Disorders, 108, 171-176. https://doi.org/10.1016/j.jad.2007.09.005
[54]  Sinclair, E., Black, D., Epling, C.L., Carvidi, A., Josefowicz, S.Z., Bredt, B.M. and Jacobson, M.A.V. (2004) CMV Antigen-Specific CD4 and CD8 T Cell IFNγ Expression and Proliferation Responses in Healthy CMV-Seropositive Individuals. Viral Immunology, 17, 445-454. https://doi.org/10.1089/vim.2004.17.445
[55]  Björkander, S., Ernberg, M. and Bileviciute-Ljungar, I. (2022) Reduced Immune System Responsiveness in Fibromyalgia—A Pilot Study. Clinical Immunology Communications, 2, 46-53. https://doi.org/10.1016/j.clicom.2022.02.003
[56]  Deumer, U.-S., Varesi, A., Floris, V., Savioli, G., Mantovani, E., López-Carrasco, P., Rosati, G.M., Prasad, S. and Ricevuti, G. (2021) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. Journal of Clinical Medicine, 10, Article No. 4786. https://doi.org/10.3390/jcm10204786
[57]  Arellano, G., Ottum, P.A., Reyes, L.I., Burgos, P.I. and Naves, R. (2015) Stage-Specific Role of Interferon-Gamma in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Frontiers in Immunology, 6, Article No. 492. https://doi.org/10.3389/fimmu.2015.00492
[58]  Passwater, M. (2022) It’s Official: Vitamin D Reduces the Incidence of Autoimmunity. Orthmolecular, 18. http://orthomolecular.org/resources/omns/v18n09.shtml
[59]  Zhao, R., Zhang, W., Ma, C., Zhao, Y., Xiong, R., Wang, H., Chen, W. and Zheng, S.G. (2021) Immunomodulatory Function of Vitamin D and Its Role in Autoimmune Thyroid Disease. Frontiers in Immunology, 12, Article ID: 574967. https://doi.org/10.3389/fimmu.2021.574967
[60]  Pourgholaminejad, A., Pahlavanneshan, S. and Basiri, M. (2022) COVID-19 Immunopathology with Emphasis on Th17 Response and Cell-Based Immunomodulation Therapy: Potential Targets and Challenges. Scandinavian Journal of Immunology, 95, Article ID: e13131. https://doi.org/10.1111/sji.13131
[61]  Pramod, R. and Edwards, L. (2019) Magnesium Supplementation in Vitamin D Deficiency. American Journal of Therapeutics, 26, e124-e132. https://doi.org/10.1097/MJT.0000000000000538
[62]  Mason, C., Tapsoba, J.D., Duggan, C., Wang, C.-Y., Korde, L. and McTiernan, A. (2016) Repletion of Vitamin D Associated with Deterioration of Sleep Quality among Postmenopausal Women. Preventive Medicine, 93, 166-170. https://doi.org/10.1016/j.ypmed.2016.09.035
[63]  Peluso, M.J., Lu, S., Tang, A.F., Durstenfeld, M.S., Hsi-en Ho, H., Goldberg, S.A., et al. (2021) Markers of Immune Activation and Inflammation in Individuals with Post-Acute Sequelae of SARS-CoV-2 Infection. The Journal of Infectious Diseases, 224, 1839-1848. https://doi.org/10.1093/infdis/jiab490
[64]  Zhang, J. (2007) Paradoxical Roles of Interferon-γ in Autoimmune Disease. Expert Review of Clinical Immunology, 3, 35-38. https://doi.org/10.1586/1744666X.3.1.35
[65]  Kelchtermans, H., Billiau, A. and Matthys, P. (2008) How Interferon-γ Keeps Autoimmune Diseases in Check. Trends in Immunology, 29, 479-486. https://doi.org/10.1016/j.it.2008.07.002
[66]  Ottum, P.A., Arellano, G., Reyes, L.I., Iruretagoyena, M. and Rodrigo, N. (2015) Opposing Roles of Interferon-Gamma on Cells of the Central Nervous System in Autoimmune Neuroinflammation. Frontiers in Immunology, 6, Article No. 539. https://doi.org/10.3389/fimmu.2015.00539
[67]  Mandai, M., Hamanishi, J., Abiko, K., Matsumura, N., Baba, T. and Konishi, I. (2016) Dual Faces of IFNγ in Cancer Progression: A Role of PD-L1 Induction in the Determination of Pro- and Antitumor Immunity. Clinical Cancer Research, 22, 2329-2334. https://doi.org/10.1158/1078-0432.CCR-16-0224
[68]  Morrison, T.E., Mauser, A., Wong, A., Ting, J.P.Y.T., Kenney, K.C., et al. (2001) Inhibition of IFN-gamma Signaling by an Epstein-Barr Virus Immediate-Early Protein. Immunity, 15, 787-799. https://doi.org/10.1016/S1074-7613(01)00226-6
[69]  Gold, J.E., Okyay, R.A., Licht, W.E. and Hurley, D.J. (2021) Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. Pathogens, 10, Article No. 763. https://doi.org/10.3390/pathogens10060763
[70]  Liang, C.L., Chen, J.L., Hsu, Y.P.P., Ou, J.T. and Chang, Y.S. (2002) Epstein-Barr Virus BZLF1 Gene Is Activated by Transforming Growth Factor-β through Cooperativity of Smads and c-Jun/c-Fos Proteins. Journal of Biological Chemistry, 277, 23345-23357. https://doi.org/10.1074/jbc.M107420200
[71]  Oronsky, B., Larson, C., Hammond, T.C., Oronsky, A., Kesari, S., Lybeck, M., et al. (2021) A Review of Persistent Post-COVID Syndrome (PPCS). Clinical Reviews in Allergy & Immunology. https://doi.org/10.1007/s12016-021-08848-3
[72]  Barros-Martins, J., Förster, R. and Bosnjak, B. (2022) NK Cell Dysfunction in Severe COVID-19: TGF-β-induced Downregulation of Integrin Beta-2 Restricts NK Cell Cytotoxicity. Signal Transduction and Targeted Therapy, 7, Article No. 32. https://doi.org/10.1038/s41392-022-00892-5
[73]  Qiao, Y.-C., Chen, Y.-L., Pan, Y.-H., Ling, W., Tian, F., Zhang, X.-X., et al. (2017) Changes of Transforming Growth Factor Beta 1 in Patients with Type 2 Diabetes and Diabetic Nephropathy. Medicine, 96, Article No. e6583. https://doi.org/10.1097/MD.0000000000006583
[74]  Laviades, C., Varo, N. and Díez, J. (2000) Transforming Growth Factor β in Hypertensives with Cardiorenal Damage. Hypertension, 36, 517-522. https://doi.org/10.1161/01.HYP.36.4.517
[75]  Woo, J., Koziol-White, C., Panettieri, R. and Jude, J. (2021) TGF-β: The Missing Link in Obesity-Associated Airway Diseases? Current Research in Pharmacology and Drug Discovery, 2, Article ID: 100016. https://doi.org/10.1016/j.crphar.2021.100016
[76]  Ferreira-Gomes, M., Kruglov, A., Durek, P., Heinrich, F., Tizian, C., Heinz, G.A., et al. (2021) SARS-CoV-2 in Severe COVID-19 Induces a TGF-β-dominated Chronic Immune Response That Does Not Target Itself. Nature Communications, 12, Article No. 1961. https://doi.org/10.1038/s41467-021-22210-3
[77]  Johansson, M., Ståhlberg, M., Runold, M., Nygren-Bonnier, M., Nilsson, J., et al. (2021) Long-Haul Post–COVID-19 Symptoms Presenting as a Variant of Postural Orthostatic Tachycardia Syndrome: The Swedish Experience. JACC: Case Reports, 3, 73-580. https://doi.org/10.1016/j.jaccas.2021.01.009
[78]  Stewart, J.M., Taneja, I., Glover, J. and Medow, M.S. (2008) Angiotensin II Type 1 Receptor Blockade Corrects Cutaneous Nitric Oxide Deficit in Postural Tachycardia Syndrome. American Journal of Physiology—Heart and Circulatory Physiolog, 294, H466-H473. https://doi.org/10.1152/ajpheart.01139.2007
[79]  Wadhwania, R. (2017) Is Vitamin D Deficiency Implicated in Autonomic Dysfunction? Journal of Pediatric Neurosciences, 12, 119-123. https://doi.org/10.4103/jpn.JPN_1_17
[80]  McCarthy, M.J. (2022) Circadian Rhythm Disruption in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for the Post-Acute Sequelae of COVID-19. Brain, Behavior, & Immunity—Health, 20, Article ID: 100412. https://doi.org/10.1016/j.bbih.2022.100412
[81]  Zhang, H.Y., Liu, Z.D., Hu, C.J., Wang, D.X., Zhang, Y.B. and Li, Y.Z. (2011) Up-regulation of TGF-β1 MRNA Expression in Peripheral Blood Mononuclear Cells of Patients with Chronic Fatigue Syndrome. Journal of the Formosan Medical Association, 110, 701-704. https://doi.org/10.1016/j.jfma.2011.09.006
[82]  Meng, X., Nikolic-Paterson, D. and Lan, H. (2016) TGF-β: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338. https://doi.org/10.1038/nrneph.2016.48
[83]  Hoffman, B. (2021, March 9) Chronic Inflammatory Response Syndrome (CIRS) Evaluation and Treatment. Hoffman Centre for Integrative and Functional Medicine, Calgary. https://hoffmancentre.com/chronic-inflammatory-response-syndrome-cirs-evaluation-and-treatment/
[84]  Mahmudpour, M., Roozbeh, J., Keshavarz, M., Farrokhi, S. and Nabipour, I. (2020) COVID-19 Cytokine Storm: The Anger of Inflammation. Cytokine, 133, Article ID: 155151. https://doi.org/10.1016/j.cyto.2020.155151
[85]  Ehanire, T., Ren, L., Bond, J., Medina, M., Li, G., Bashirov, L., et al. (2015) Angiotensin II Stimulates Canonical TGF-β Signaling Pathway through Angiotensin Type 1 Receptor to Induce Granulation Tissue Contraction. Journal of Molecular Medicine, 93, 289-302. https://doi.org/10.1007/s00109-014-1211-9
[86]  Lanz, T.V., Ding, Z., Ho, P.P., Luo, J., Agrawal, A.N., Srinagesh, H., et al. (2010) Angiotensin II Sustains Brain Inflammation in Mice Via TGF-β. Journal of Clinical Investigation, 120, 2782-2794. https://doi.org/10.1172/JCI41709
[87]  Shi, Y., Liu, T., Yao, L., Xing, Y., Zhao, X., Fu, J., et al. (2017) Chronic Vitamin D Deficiency Induces Lung Fibrosis through Activation of the Renin-Angiotensin System. Scientific Reports, 7, Article No. 3312. https://doi.org/10.1038/s41598-017-03474-6
[88]  Sanders, V.M. (2006) Epigenetic Regulation of Th1 and Th2 Cell Development. Brain, Behavior, and Immunity, 20, 317-324. https://doi.org/10.1016/j.bbi.2005.08.005

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413