全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Trends and Hotspots of microRNAs in Epilepsy: A 10-Year Cross-Sectional Study

DOI: 10.4236/oalib.1108650, PP. 1-11

Subject Areas: Literature, Allergy & Clinical Immunology, Culture

Keywords: Epilepsy, microRNAs, Cross-Sectional Study, Bibliometrics

Full-Text   Cite this paper   Add to My Lib

Abstract

miRNAs regulate a variety of target proteins and signaling pathways associated with epilepsy. We conducted a cross-sectional study of publications associated with microRNA in epilepsy in the past 10 years using bibliometric methods. Our results showed that the number of publications elevated gradually, peaking in 2020. Countries/institutions collaboration network showed that extensive international cooperation between countries existed and China published the most of papers in this field. USA, Ireland, and other Western countries are also active in this field. Moreover, we identify the most influential authors and publications. Last, Keyword co-occurrence network indicated miR-146a, miR-155 and miR-132 were hotspots and the most studied microRNAs, miR-146a, miR-155 and miR-132 may be potential targets and more mechanisms associated with microRNA in epilepsy will be found.

Cite this paper

Wang, S. and Jiang, G. (2022). Trends and Hotspots of microRNAs in Epilepsy: A 10-Year Cross-Sectional Study. Open Access Library Journal, 9, e8650. doi: http://dx.doi.org/10.4236/oalib.1108650.

References

[1]  Ngugi, A.K., Bottomley, C., Kleinschmidt, I., Sander, J.W. and Newton, C.R. (2010) Estimation of the Burden of Active and Life-Time Epilepsy: A Meta-Analytic Approach. Epilepsia, 51, 883-890. https://doi.org/10.1111/j.1528-1167.2009.02481.x
[2]  Albanese, M., Chen, Y.A., Hüls, C., Gärtner, K., Tagawa, T., Mejias-Perez, E., et al. (2021) MicroRNAs Are Minor Constituents of Extracellular Vesicles That Are Rarely Delivered to Target Cells. PLoS Genetics, 17, e1009951. https://doi.org/10.1371/journal.pgen.1009951
[3]  Bej, S. and Basak, J. (2014) MicroRNAs: The Potential Biomarkers in Plant Stress Response. American Journal of Plant Sciences, 5, 748-759. https://doi.org/10.4236/ajps.2014.55089
[4]  Hu, K., Xie, Y.Y., Zhang, C., Ouyang, D.S., Long, H.Y., Sun, D.N., et al. (2012) MicroRNA Expression Profile of the Hippocampus in a Rat Model of Temporal Lobe Epilepsy and miR-34a-Targeted Neuroprotection against Hippocampal Neurone Cell Apoptosis Post-Status Epilepticus. BMC Neuroscience, 13, Article No. 115. https://doi.org/10.1186/1471-2202-13-115
[5]  Sun, J., Gao, X., Meng, D., Xu, Y., Wang, X., Gu, X., et al. (2017) Antagomirs Targeting MicroRNA-134 Increase Limk1 Levels after Experimental Seizures in Vitro and in Vivo. Cellular Physiology and Biochemistry, 43, 636-643. https://doi.org/10.1159/000480647
[6]  Xiao, Y., Wu, H., Wang, G. and Mei, H. (2021) Mapping the Worldwide Trends on Energy Poverty Research: A Bibliometric Analysis (1999-2019). International Journal of Environmental Research and Public Health, 18, 1764. https://doi.org/10.3390/ijerph18041764
[7]  Zhou, X. and Zhang, D. (2021) Multimorbidity in the Elderly: A Systematic Bibliometric Analysis of Research Output. International Journal of Environmental Research and Public Health, 19, 353. https://doi.org/10.3390/ijerph19010353
[8]  Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., van Vliet, E.A., et al. (2010) Expression Pattern of miR-146a, an Inflammation-Associated microRNA, in Experimental and Human Temporal Lobe Epilepsy. European Journal of Neuroscience, 31, 1100-1107. https://doi.org/10.1111/j.1460-9568.2010.07122.x
[9]  Omran, A., Peng, J., Zhang, C.L., Xiang, Q.L., Xue, J.F., Gan, N., et al. (2012) Interleukin-1 beta and microRNA-146a in an Immature Rat Model and Children with Mesial Temporal Lobe Epilepsy. Epilepsia, 53, 1215-1224. https://doi.org/10.1111/j.1528-1167.2012.03540.x
[10]  Roncon, P., Soukupova, M., Binaschi, A., Falcicchia, C., Zucchini, S., Ferracin, M., et al. (2015) MicroRNA Profiles in Hippocampal Granule Cells and Plasma of Rats with Pilocarpine-Induced Epilepsy—Comparison with Human Epileptic Samples. Scientific Reports, 5, Article No. 15. https://doi.org/10.1038/srep14143
[11]  Cui, L.L., Tao, H., Wang, Y., Liu, Z., Xu, Z.E., Zhou, H.H., et al. (2015) A Functional Polymorphism of the microRNA-146a Gene Is Associated with Susceptibility to Drug-Resistant Epilepsy and Seizures Frequency. Seizure-European Journal of Epilepsy, 27, 60-65. https://doi.org/10.1016/j.seizure.2015.02.032
[12]  An, N., Zhao, W., Liu, Y.C., Yang, X.F. and Chen, P. (2016) Elevated Serum miR-106b and miR-146a in Patients with Focal and Generalized Epilepsy. Epilepsy Research, 127, 311-316. https://doi.org/10.1016/j.eplepsyres.2016.09.019
[13]  Li, Y., Wang, J.Q., Jiang, C.M., Zheng, G., Lu, X.P. and Guo, H. (2016) Association of the Genetic Polymorphisms in Pre-microRNAs with Risk of Childhood Epilepsy in a Chinese Population. Seizure-European Journal of Epilepsy, 40, 21-26. https://doi.org/10.1016/j.seizure.2016.04.011
[14]  Kong, H.M., Yin, F., He, F., Omran, A., Li, L.H., Wu, T.H., et al. (2015) The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation. Journal of Molecular Neuroscience, 57, 28-37. https://doi.org/10.1007/s12031-015-0574-x
[15]  He, F., Liu, B., Meng, Q., Sun, Y., Wang, W.W. and Wang, C. (2016) Modulation of miR-146a/Complement Factor H-Mediated Inflammatory Responses in a Rat Model of Temporal Lobe Epilepsy. Bioscience Reports, 36, 12. https://doi.org/10.1042/BSR20160290
[16]  Li, T.R., Jia, Y.J., Ma, C., Qiu, W.Y., Wang, Q., Shao, X.Q., et al. (2018) The Role of the microRNA-146a/Complement Factor H/Interleukin-1 Beta-Mediated Inflammatory Loop Circuit in the Perpetuate Inflammation of Chronic Temporal Lobe Epilepsy. Disease Models & Mechanisms, 11, dmm031708. https://doi.org/10.1242/dmm.031708
[17]  Zhang, H.L., Lin, Y.H., Qu, Y. and Chen, Q. (2018) The Effect of miR-146a Gene Silencing on Drug-Resistance and Expression of Protein of P-gp and MRP1 in Epilepsy. European Review for Medical and Pharmacological Sciences, 22, 2372-2379.
[18]  Huang, H., Cui, G.Y., Tang, H., Kong, L.W., Wang, X.P., Cui, C.C., et al. (2019) Silencing of microRNA-146a Alleviates the Neural Damage in Temporal Lobe Epilepsy by Down-Regulating Notch-1. Molecular Brain, 12, 102. https://doi.org/10.1186/s13041-019-0523-7
[19]  Ashhab, M.U., Omran, A., Kong, H., Gan, N., He, F., Peng, J., et al. (2013) Expressions of Tumor Necrosis Factor Alpha and microRNA-155 in Immature Rat Model of Status Epilepticus and Children with Mesial Temporal Lobe Epilepsy. Journal of Molecular Neuroscience, 51, 950-958. https://doi.org/10.1007/s12031-013-0013-9
[20]  Tili, E., Michaille, J.J., Cimino, A., Costinean, S., Dumitru, C.D., Adair, B., et al. (2007) Modulation of miR-155 and miR-125b Levels Following Lipopolysaccharide/TNF-Alpha Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock. Journal of Immunology (Baltimore, Md: 1950), 179, 5082-5089. https://doi.org/10.4049/jimmunol.179.8.5082
[21]  Ceppi, M., Pereira, P.M., Dunand-Sauthier, I., Barras, E., Reith, W., Santos, M.A., et al. (2009) MicroRNA-155 Modulates the Interleukin-1 Signaling Pathway in Activated Human Monocyte-Derived Dendritic Cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 2735-2740. https://doi.org/10.1073/pnas.0811073106
[22]  Li, T.R., Jia, Y.J., Wang, Q., Shao, X.Q., Zhang, P. and Lv, R.J. (2018) Correlation between Tumor Necrosis Factor Alpha mRNA and microRNA-155 Expression in Rat Models and Patients with Temporal Lobe Epilepsy. Brain Research, 1700, 56-65. https://doi.org/10.1016/j.brainres.2018.07.013
[23]  Huang, L.G., Zou, J. and Lu, Q.C. (2018) Silencing rno-miR-155-5p in Rat Temporal Lobe Epilepsy Model Reduces Pathophysiological Features and Cell Apoptosis by Activating Sestrin-3. Brain Research, 1689, 109-122. https://doi.org/10.1016/j.brainres.2017.11.019
[24]  Cai, Z., Li, S., Li, S., Song, F., Zhang, Z., Qi, G., et al. (2016) Antagonist Targeting microRNA-155 Protects against Lithium-Pilocarpine-Induced Status Epilepticus in C57BL/6 Mice by Activating Brain-Derived Neurotrophic Factor. Frontiers in Pharmacology, 7, Article No. 129. https://doi.org/10.3389/fphar.2016.00129
[25]  Duan, W., Chen, Y. and Wang, X.R. (2018) MicroRNA-155 Contributes to the Occurrence of Epilepsy through the PI3K/Akt/mTOR Signaling Pathway. International Journal of Molecular Medicine, 42, 1577-1584. https://doi.org/10.3892/ijmm.2018.3711
[26]  Vezzani, A., Maroso, M., Balosso, S., Sanchez, M.A. and Bartfai, T. (2011) IL-1 Receptor/Toll-Like Receptor Signaling in Infection, Inflammation, Stress and Neurodegeneration Couples Hyperexcitability and Seizures. Brain, Behavior, and Immunity, 25, 1281-1289. https://doi.org/10.1016/j.bbi.2011.03.018
[27]  Zhang, Z.J., Wang, Z.Z., Zhang, B. and Liu, Y. (2018) Downregulation of microRNA-155 by Preoperative Administration of Valproic Acid Prevents Postoperative Seizures by Upregulating SCN1A. Molecular Medicine Reports, 17, 1375-1381. https://doi.org/10.3892/mmr.2017.8004
[28]  Qian, Y., Song, J., Ouyang, Y., Han, Q., Chen, W., Zhao, X., et al. (2017) Advances in Roles of miR-132 in the Nervous System. Frontiers in Pharmacology, 8, Article No. 770. https://doi.org/10.3389/fphar.2017.00770
[29]  Peng, J., Omran, A., Ashhab, M.U., Kong, H., Gan, N., He, F., et al. (2013) Expression Patterns of miR-124, miR-134, miR-132, and miR-21 in an Immature Rat Model and Children with Mesial Temporal Lobe Epilepsy. Journal of Molecular Neuroscience: MN, 50, 291-297. https://doi.org/10.1007/s12031-013-9953-3
[30]  Xiang, L., Ren, Y.P., Cai, H., Zhao, W. and Song, Y.J. (2015) MicroRNA-132 Aggravates Epileptiform Discharges via Suppression of BDNF/TrkB Signaling in Cultured Hippocampal Neurons. Brain Research, 1622, 484-495. https://doi.org/10.1016/j.brainres.2015.06.046
[31]  Huang, Y.Y., Guo, J., Wang, Q. and Chen, Y.M. (2014) MicroRNA-132 Silencing Decreases the Spontaneous Recurrent Seizures. International Journal of Clinical and Experimental Medicine, 7, 1639-1649.
[32]  Yuan, J.X., Huang, H., Zhou, X., Liu, X., Ou, S., Xu, T., et al. (2016) MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process. Neural Plasticity, 2016, Article ID: 5108489. https://doi.org/10.1155/2016/5108489
[33]  Xia, L., Li, D.J., Lin, C.W., Ou, S.C., Li, X.R. and Pan, S.Q. (2017) Comparative Study of Joint Bioinformatics Analysis of Underlying Potential of “neurimmiR”, miR-212-3P/miR-132-3P, Being Involved in Epilepsy and Its Emerging Role in Human Cancer. Oncotarget, 8, 40668-40682. https://doi.org/10.18632/oncotarget.16541

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413