全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Plastic Surgery Update on the Mesenchymal Stem-Cell Derived Extracellular Vesicles towards Cell-Free Therapeutic Applications

DOI: 10.4236/oalib.1107393, PP. 1-24

Subject Areas: Surgery & Surgical Specialties

Keywords: Regenerative Medicine, Extracellular Vesicles, Mesenchymal Stem Cells

Full-Text   Cite this paper   Add to My Lib

Abstract

In the biogenesis of extracellular vesicles (EVs), exosomes and other lipid-lined vesicles are released upon fusion of multivesicular bodies with the cell membrane of stem cells. EVs contain a diverse number of growth factors, cytokines and bioactive molecules of proteins, lipids, microRNA, and mRNA that mediate cell-cell communications for homeostasis, immune signaling, angiogenesis, anti-inflammation, senescence, proliferation, and differentiation. To further explore its potential usages, plastic surgeons are beginning to show an increased interest in this novel cell-free therapy to partially explain the paracrine effects of cell-based therapies on cell repair, tissue engineering, and aesthetic rejuvenation. The burgeoning preclinical and clinical experience appears to be promising, but current in vitro studies, translational research, and IRB-registered investigations emphasize the need to clarify product identification/purity, attributed biologic functions, standardized protocols, and applications to advance basic science findings and provide beneficial safe clinical outcomes. Since the specialty of Plastic Surgery is committed to advancing evidence-based stem cell studies in compliance with FDA regulations, an updated review of EVs is timely to provide insights to achieve these goals.

Cite this paper

Sasaki, G. H. (2021). Plastic Surgery Update on the Mesenchymal Stem-Cell Derived Extracellular Vesicles towards Cell-Free Therapeutic Applications. Open Access Library Journal, 8, e7393. doi: http://dx.doi.org/10.4236/oalib.1107393.

References

[1]  Thomas, E.D., Lochte, H.L., Lu, W.C., et al. (1957) Intravenous Infusion of Bone Marrow in Patients Receiving Radiation and Chemotherapy. New England Journal of Medicine, 257, 491-496. https://doi.org/10.1056/NEJM195709122571102
[2]  Donald, G.P. and Darwin, J.P. (2007) Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair—Current View. Stem Cells, 25, 2896-2902. https://doi.org/10.1634/stemcells.2007-0637
[3]  Nishida, K., Yamato, M., Hayashida, Y., et al. (2004) Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium. New England Journal of Medicine, 351, 1187-1196. https://doi.org/10.1056/NEJMoa040455
[4]  Zhou, H., Guo, M., Bian, C., et al. (2010) Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Sclerodermatous Chronic Graft-Versus-Host Disease: Clinical Report. Biology of Blood and Marrow Transplantation, 16, 403-412. https://doi.org/10.1016/j.bbmt.2009.11.006
[5]  Yoshimura, K., Suga, H. and Eto, H. (2009) Adipose-Derived Stem/Progenitor Cells, Roles in Adipose Tissue Remodeling and Potential Use for Soft Tissue Augmentation. Regenerative Medicine, 4, 265-273. https://doi.org/10.2217/17460751.4.2.265
[6]  Harrison, J.H., Merrill, J.P. and Murray, J.E. (1956) Renal Homotransplantation in Identical Twins. Surgical Forum, 6, 432-436.
[7]  Caplan, A.I. (2007) Adult Mesenchymal Stem Cells for Tissue Engineering versus Regenerative Medicine. Journal of Cellular Physiology, 213, 341-347. https://doi.org/10.1002/jcp.21200
[8]  Wong, V.W., Rustad, K.C., Longaker, M.T. and Gurtner, G.C. (2010) Tissue Engineering in Plastic Surgery: A Review. Plastic and Reconstructive Surgery, 126, 858-868. https://doi.org/10.1097/PRS.0b013e3181e3b3a3
[9]  Beeson, W., Woods, E. and Agha R. (2011) Tissue Engineering, Regenerative Medicine, and Rejuvenation in 2010: The Role of Adipose-Derived Stem Cells. Facial Plastic Surgery, 27, 378-388. https://doi.org/10.1055/s-0031-1283056
[10]  Han, F., Jia, X., Dai, D., et al. (2013) Performance of a Multi-Layered Small-Diameter Vascular Scaffold Dual-Loaded with VEGF and PDGF. Biomaterials, 34, 7302-7313. https://doi.org/10.1016/j.biomaterials.2013.06.006
[11]  Thevenot, P.T., Nair, A.M., Shen, J., et al. (2010) The Effects of Incorporation of SDF-1α into PLGA Scaffolds on Stem Cell Recruitment and the Inflammatory Response. Biomaterials, 31, 3997-4008. https://doi.org/10.1016/j.biomaterials.2010.01.144
[12]  Mittelbrunn, M. and Sanchez-Madrid, F. (2012) Intercellular Communication: Diverse Structures for Exchange of Genetic Information. Nature Reviews Molecular Cell Biology, 13, 328-335. https://doi.org/10.1038/nrm3335
[13]  Pittenger, M.F., Mackay, A.M., Beck, S.C., et al. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 284, 143-147. https://doi.org/10.1126/science.284.5411.143
[14]  Zuk, P.A., Zhu, M., Mizuno, H., et al. (2001) Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Engineering, 7, 211-228. https://doi.org/10.1089/107632701300062859
[15]  Gimble, J.M., Guliak, F. and Bunnell, B.A. (2010) Clinical and Preclinical Translation of Cell-Base Therapies Using Adipose Tissue-Derived Cells. Stem Cell Research & Therapy, 1, Article No. 19.
[16]  Wang, S., Qu, X. and Zhao, R.C. (2011) Mesenchymal Stem Cells Hold Promise for Regenerative Medicine. Frontiers of Medicine, 5, 372-378. https://doi.org/10.1007/s11684-011-0164-4
[17]  Doorn, J., Moll, G., Le Blanc, K., et al. (2012) Therapeutic Applications of Mesenchymal Stromal Cells: Paracrine Effects and Potential Improvements. Tissue Engineering Part B: Reviews, 18, 101-115. https://doi.org/10.1089/ten.teb.2011.0488
[18]  Lim, P., Patel, S.A. and Rameshwar, P. (2011) Effective Tissue Repair and Immunomodulation by Mesenchymal Stem Cells within a Milieu of Cytokines. In: Gorodetsky, R. and Schafer, R., Eds., Stem Cell Based Tissue Repair, RSC Publications, Cambridge, UK, 346-365.
[19]  Lavoie, J.R. and Rosu-Myles, M. (2013) Uncovering the Secretes of Mesenchymal Stem Cells. Biochimie Journal, 95, 2212-2221. https://doi.org/10.1016/j.biochi.2013.06.017
[20]  Szoke, K., Beckstrom, K.J. and Binchmann, H.E. (2012) Human Adipose Tissue as a Source of Cells with Angiogenic Potential. Cell Transplantation, 21, 235-250. https://doi.org/10.3727/096368911X580518
[21]  Zhang, B., Yin, Y., Lai, R.C., Tan, S.S., Choo, A.B.H. and Lim, S.K. (2014) Mesenchymal Stem Cells Secrete Immunologically Active Exosomes. Stem Cells and Development, 23, 1233-1244. https://doi.org/10.1089/scd.2013.0479
[22]  Yu, B., Zhang, X. and Li, S. (2014) Exosomes Derived from Mesenchymal Stem Cells. International Journal of Molecular Sciences, 15, 4142-4157. https://doi.org/10.3390/ijms15034142
[23]  Hong, K.Y., Yim, S., Kin, H.J., et al. (2018) The Fate of Adipose-Derived Stromal Cells during Angiogenesis and Adipogenesis after Cell-Assisted Lipotransfer. Plastic and Reconstructive Surgery, 141, 365-375. https://doi.org/10.1097/PRS.0000000000004021
[24]  Zhu, X., Shi, W., Tai, W. and Liu, F. (2012) The Comparition of Biological Characteristics and Multilineage Differentiation of Bone Marrow and Adipose Derived Mesenchymal Stem Cells. Cell and Tissue Research, 350, 277-287. https://doi.org/10.1007/s00441-012-1453-1
[25]  Pachon-Pena, B., Yu, G., Tucker, A., et al. (2007) Stromal Stem Cells from Adipose Tissue and Bone Marrow of Age-Matched Female Donors Display Distinct Immunophenotypic Profiles. Journal of Cellular Physiology, 212, 702-709.
[26]  Puissant, B., Barreau, C., Bourin, P., et al. (2005) Immunomodulatory Effect of Human Adipose Tissue-Derived Adult Stem Cells: Comparison with Bone Marrow Mesenchymal Stem Cells. British Journal of Haematology, 129, 118-129. https://doi.org/10.1111/j.1365-2141.2005.05409.x
[27]  Halme, G.D. and Kessler, D.A. (2006) FDA Regulations of Stem-Cell-Based Therapies. New England Journal of Medicine, 355, 1730-1735. https://doi.org/10.1056/NEJMhpr063086
[28]  Slaper-Cortenback, I.C. (2008) Current Regulations for the Production of Multipotent Mesenchymal Stromal Cells for Clinical Application. Transfusion Medicine and Hemotherapy, 35, 295-298. https://doi.org/10.1159/000144043
[29]  Banyard, D.A., Salibian, A.A., Widerow, A.D., et al. (2015) Implications for Human Adipose-Derived Stem Cells in Plastic Surgery. Journal of Cellular and Molecular Medicine, 19, 21-30. https://doi.org/10.1111/jcmm.12425
[30]  Haarer, J., Johnson, C.L., Soeder, U. and Dahlke, M.H. (2015) Caveats of Mesenchymal Stem Cell Therapy in Solid Organ Transplantation. Transplantation International, 28, 1-9. https://doi.org/10.1111/tri.12415
[31]  Poulos, J. (2018) The Limited Application of Stem Cells in Medicine: A Review. Stem Cell Research & Therapy, 9, Article No. 1. https://doi.org/10.1186/s13287-017-0735-7
[32]  Tkach, M. and Thery, C. (2016) Communication by Extracellular Vesicles: Where Are We and Where We Need to Go. Cell, 164, 1226-1233. https://doi.org/10.1016/j.cell.2016.01.043
[33]  Chargaff, E. and West, R. (1946) The Biological Significance of the Thromboplastic Protein of Blood. Journal of Biological Chemistry, 166, 189-197. https://doi.org/10.1016/S0021-9258(17)34997-9
[34]  Wolf, P. (1967) The Nature and Significance of Platelet Products in Human Plasma. British Journal of Haematology, 13, 269-288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x
[35]  Pan, B.T. and Johnstone, R.M. (1983) Fate of the Transferrin Receptor during Maturation of Sheep Reticulocytes in Vitro: Selective Externalization of the Receptor. Cell, 33, 967-978. https://doi.org/10.1016/0092-8674(83)90040-5
[36]  Johnstone, R.M., Adam, M., Hammond, J.R., et al. (1987) Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). Journal of Biological Chemistry, 262, 9412-9420. https://doi.org/10.1016/S0021-9258(18)48095-7
[37]  Valadi, H., Ekstrom, K., Bossios, A., et al. (2007) Exosome-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nature Cell Biology, 9, 654-659. https://doi.org/10.1038/ncb1596
[38]  Desdín-Micó, G. and Mittelbrunn, M. (2017) Role of Exosomes in the Protection of Cellular Homeostasis. Cell Adhesion & Migration, 11, 127-134. https://doi.org/10.1080/19336918.2016.1251000
[39]  Bobrie, A., Colombo, M., Raposo, G., et al. (2011) Exosome Secretion: Molecular Mechanisms and Roles in Immune Responses. Traffic, 12, 1659-1668. https://doi.org/10.1111/j.1600-0854.2011.01225.x
[40]  Gutzeit, C., Nagy, N., Gentile, M., et al. (2014) Exosomes Derived from Burkitt’s lymphoma Cell Lines Induce Proliferation, Differentiation and Class-Switch Recombination in B Cells. Journal of Immunology, 192, 5852-5862. https://doi.org/10.4049/jimmunol.1302068
[41]  Xu, D. and Tahara, H. (2013) The Role of Exosomes and microRNAs in Senescence and Aging. Advanced Drug Delivery Review, 65, 368-375. https://doi.org/10.1016/j.addr.2012.07.010
[42]  Yáñez-Mó, M., Siljander P.R., Andreu, Z., et al. (2015) Biological Properties of Extracellular Vesicles and Their Physiological Functions. Journal of Extracellular Vesicles, 4, Article ID: 27066.
[43]  Granger, E., McNee, G., Allan, V., et al. (2014) The Role of the Cytoskeleton and Molecular Motors in Endosomal Dynamics. Seminars in Cell & Developmental Biology, 31, 20-29. https://doi.org/10.1016/j.semcdb.2014.04.011
[44]  Hemler, M.E. (2003) Tetraspanin Proteins Mediate Cellular Penetration, Invasion, and Fusion Events, and Define a Novel Type of Membrane Microdomain. Annual Review of Cell and Developmental Biology, 19, 397-422. https://doi.org/10.1146/annurev.cellbio.19.111301.153609
[45]  Pan, B.T., Teng, K., Wu, C., et al. (1985) Electron Microscopic Evidence for Externalization of the Transferrin Receptor in Vesicular Form in Sheep Reticulocytes. Journal of Cell Biology, 101, 942-948. https://doi.org/10.1083/jcb.101.3.942
[46]  Subra, C., Grand, D., Laulagnier, K., et al. (2010) Exosomes Account for Vesicle- Medicated Transcellular Transport of Activatable Phospholipases and Prostaglandins. Journal of Lipid Research, 51, 2105-2120. https://doi.org/10.1194/jlr.M003657
[47]  Michael, A., Bajracharya, S.D., Yuen, P.S., et al. (2010) Exosomes from Human Saliva as a Source of microRNA Biomarkers. Oral Disease, 16, 34-38. https://doi.org/10.1111/j.1601-0825.2009.01604.x
[48]  Mittelbrunn, M.C., Gutierrez-Vasquez, C., Villarroya-Beltri, S., et al. (2011) Unidirectional Transfer of microRNA-Loaded Exosomes from T Cells to Antigen-Pre- senting Cells. Nature Communications, 2, Article No. 282. https://doi.org/10.1038/ncomms1285
[49]  Guescini, M., Genedani, S., Stocchi, V., et al. (2010) Astrocytes and Glioblastoma Cells Release Exosomes Carrying mtDNA. Journal of Neural Transmission (Vienna), 117, Article No. 1. https://doi.org/10.1007/s00702-009-0288-8
[50]  Thery, C., Amigorena, S., Roposo, G., et al. (2006) Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology, 30, 3.22.1-3.22.29. https://doi.org/10.1002/0471143030.cb0322s30
[51]  Aalberts, M., van Dissel-Emiliani, F.M., van Adrichem, N.P., et al. (2012) Identification of Distinct Populations of Prostasomes that Differentially Express Prostate stem Cell Antigen, Annexin A1 and GLIPR2 in Humans. Biology of Reproduction, 86, Article No. 82. https://doi.org/10.1095/biolreprod.111.095760
[52]  Conde-Vancells, J., Rodriguez-Suarez, E., Embade, N., et al. (2008) Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes. Journal of Proteome Research, 7, 5157-5166. https://doi.org/10.1021/pr8004887
[53]  Witwer, K.W., Buzas, E.I., Bemis, L.T., et al. (2013) Standardization of Sample Collection, Isolation and Analysis methods in Extracellular Vesicle Subpopulations. Journal of Extracellular Vesicles, 2, Article No. 20360. https://doi.org/10.3402/jev.v2i0.20360
[54]  Raposo, G., Nijman, H.W., Stoorvogel, W., et al. (1996) B Lymphocytes Secrete Antigen-Presenting Vesicles. Journal of Experimental Medicine, 183, 1161-1172. https://doi.org/10.1084/jem.183.3.1161
[55]  Raposo, G. and Stoorvogen, W. (2013) Extracellular Vesicles: Exosomes, Microvesicles, and Friends. Journal of Cell Biology, 200, 373-383. https://doi.org/10.1083/jcb.201211138
[56]  van der Pol, E., Böing, A.N., Harrison, P., Sturk, A., Nieuwland, R. and Mattson, M.P. (2012) Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacological Reviews, 64, 676-705. https://doi.org/10.1124/pr.112.005983
[57]  Dragovic, R.A., Gardiner, C., Brooks, A.S., et al. (2011) Sizing and Phenotyping of Cellular Vesicles Using Nanoparticle Tracking Analysis. Nanomedicine, 7, 780-788. https://doi.org/10.1016/j.nano.2011.04.003
[58]  Gyorgy, B., Modos, K., Pallinger, E., et al. (2011) Detection and Isolation of Cell- Derived Microparticles Are Compromised by Protein Complexes Resulting from Shared Biophysical Parameters. Blood, 117, e39-e48. https://doi.org/10.1182/blood-2010-09-307595
[59]  Turiak, L., Misjak, P., Szabo, T.G., et al. (2011) Proteomic Characterization of Thymocytes-Derived Microvesicles and Apoptotic Bodies. Journal of Proteomics, 74, 2025-2033. https://doi.org/10.1016/j.jprot.2011.05.023
[60]  Marzesco, A.M., Janich, P., Wilsch-Brauninger, M., et al. (2005) Release of Extracellular Membrane Particles Carrying Stem Cell Marker Prominin-1 (CD133) from Neural Progenitors and Other Epithelial Cells. Journal of Cell Science, 118, 2849-2858. https://doi.org/10.1242/jcs.02439
[61]  Hristov, M., Erl, W., Linder, S., et al. (2004) Apoptotic Bodies from Endothelial Cells Enhance the Number and Initiate the Differentiation of Human Endothelial Progenitor Cells in Vitro. Blood, 104, 2761-2766. https://doi.org/10.1182/blood-2003-10-3614
[62]  Thery, C., Ostrowski, M. and Segura, E. (2009) Membrane Vesicles as Conveyers of Immune Responses. Nature Reviews Immunology, 9, 581-593. https://doi.org/10.1038/nri2567
[63]  Palma, J., Yaddanapudi, S.C., Pigati, L., et al. (2012) MicroRNAs Are Exported from Malignant Cells in Customized Particles. Nucleic Acids Research, 40, 9125-9138. https://doi.org/10.1093/nar/gks656
[64]  Mathivanan, S., Fahner, C.J., Reid, G.E., et al. (2012) ExoCarta 2012: Database of Exosomal Proteins, RNA, and Lipids. Nucleic Acids Research, 40, D1242-1244. https://doi.org/10.1093/nar/gkr828
[65]  Kalra, H., Simpson, R.J., Ji, H., et al. (2012) Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 10, e1001450. https://doi.org/10.1371/journal.pbio.1001450
[66]  Colombo, M., Raposo, G. and Thery, C. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326
[67]  Record, M., Carayon, K., Poirot, M., et al. (2014) Exosomes as New Vesicular Lipid Transporters Involved in Cell-Cell Communication and Various Pathophysiologies. Biochimica et Biophysica Acta, 1841, 108-120. https://doi.org/10.1016/j.bbalip.2013.10.004
[68]  Ikonen, E. (2001) Roles of Lipid Rafts in Membrane Transport. Current Opinion in Cell Biology, 13, 470-477. https://doi.org/10.1016/S0955-0674(00)00238-6
[69]  Simons, K. and Sampaio, J.L. (2011) Membrane Organization and Lipid Rafts. Cold Spring Harbor Perspective in Biology, 3, a004697. https://doi.org/10.1101/cshperspect.a004697
[70]  Llorente, A., van Deurs, B. and Sandvig, K. (2007) Cholesterol Regulates Prostasome Release from Secretory Lysosomes in PC-3 Human Prostate Cancer Cells. European Journal of Cell Biology, 86, 405-415. https://doi.org/10.1016/j.ejcb.2007.05.001
[71]  Ratajczak, J., Miedus, K., Kucia, M., et al. (2006) Embryonic Stem Cell-Derived Microvesicles Reprogram Hematopoietic Progenitors: Evidence for Horizontal Transfer of mRNA and Protein Delivery. Leukemia, 20, 847-856. https://doi.org/10.1038/sj.leu.2404132
[72]  Baj-Krzyworzeka, M., Szatanek, R., Weglarczyk, K., et al. (2006) Tumor-Derived Microvesicles Carry Several Surface Determinants and mRNA of Tumour Cells and Transfer Some of These Determinants to Monocytes. Cancer Immunology, Immunotherapy, 55, 808-818. https://doi.org/10.1007/s00262-005-0075-9
[73]  Batagov, A.O. and Kurochkin, I.V. (2013) Exosomes Secreted by Human Cells Transport Largely mRNA Fragments that Are Enriched in the 3’-Untranslated Regions. Biology Direct, 8, Article No. 12. https://doi.org/10.1186/1745-6150-8-12
[74]  Huang, X., Yuan, T., Tschannen, M., et al. (2013) Characterization of Human Plasma-Derived Exosomal RNAs by Deep Sequencing. BMC Genomics, 14, Article No. 319. https://doi.org/10.1186/1471-2164-14-319
[75]  Bellingham, S.A., Coleman, B.M. and Hill, A.F. (2012) Small RNA Deep Sequencing Reveals a Distinct miRNA Signature Released in Exosomes from Prion-Infected Neuronal Cells. Nucleic Acids Research, 40, 10937-10949. https://doi.org/10.1093/nar/gks832
[76]  Crescitelli, R., Lasser, C., Szabo, T.G., et al. (2013) Distinct RNA Profiles in Subpopulations of Extracellular Vesicles: Apoptotic Bodies, Microvesicles and Exosomes. Journal of Extracellular Vesicles, 2, Article No. 20677. https://doi.org/10.3402/jev.v2i0.20677
[77]  Nolte-’t Hoen, E.N., Buermans, H.P., Waasdorp, M., et al. (2012) Deep Sequencing of RNA from Immune Cell-Derived Vesicles Uncovers the Selective Incorporation of Small Non-Coding RNA Biotypes with Potential Regulatory Functions. Nucleic Acids Research, 40, 9272-9285. https://doi.org/10.1093/nar/gks658
[78]  Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., et al. (2014) Sorting It Out: Regulation of Exosome Loading. Seminars in Cancer Biology, 28, 3-13. https://doi.org/10.1016/j.semcancer.2014.04.009
[79]  Ostenfeld, M.S., Jeppensen, D.K., Laurberg, J.R., et al. (2014) Cellular Disposal of miR23b by RAB27-Depent Exosome Release Is Linked to Acquisition of Metastatic Properties. Cancer Research, 74, 5758-5771. https://doi.org/10.1158/0008-5472.CAN-13-3512
[80]  Deregibus, M.C., Cantaluppi, V., Calogero, R., et al. (2007) Endothelial Progenitor Cell Derived Microvesicles Activate an Angiogenic Program in Endothelial Cells by a Horizontal Transfer of mRNA. Blood, 110, 2440-2448. https://doi.org/10.1182/blood-2007-03-078709
[81]  Bruno, S., Grange, C., Collino, F., et al. (2012) Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury. PLoS ONE, 7, e33115. https://doi.org/10.1371/journal.pone.0033115
[82]  Bruno, S., Grange, C., Deregibus, M.C., et al. (2009) Mesenchymal Stem Cell-Derived Microvesicles Protect against Acute Tubular Injury. Journal American Society of Nephrology, 20, 1053-1067. https://doi.org/10.1681/ASN.2008070798
[83]  Muller, G., Schneider, M., Biemer-Daub, G., et al. (2011) Microvesicles Released from Rat Adipocytes and Harboring Glycosylphosphatidylinositol-Anchored Proteins Transfer RNA Stimulating Lipid Synthesis. Cellular Signalling, 23, 1207-1223. https://doi.org/10.1016/j.cellsig.2011.03.013
[84]  Ogawa, R., Tanaka, C., Sato, M., et al. (2010) Adipocyte-Derived Microvesicles Contain RNA That Is Transported into Macrophages and Might Be Secreted into Blood Circulation. Biochemisty and Biophysics Research Communications, 398, 723-729. https://doi.org/10.1016/j.bbrc.2010.07.008
[85]  Fernandez-Messina, L., Gutierrez-Vasquez, C., Rivas-Garcia, E., et al. (2015) Immunomodulatory Role of microRNAs Transferred by Extracellular Vesicles. Biological Cell, 107, 61-77. https://doi.org/10.1111/boc.201400081
[86]  Forterre, A., Jalabert, A., Chikh, K., et al. (2014) Myotube-Derived Exosomal miRNAs Downregulate Sirtuin1 in Myoblasts during Muscle Cell Differentiation. Cell Cycle, 13, 78-89. https://doi.org/10.4161/cc.26808
[87]  Xu, J.F., Yang, G.H., Pan, X.H., et al. (2014) Altered microRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. PLoS ONE, 9, e114627. https://doi.org/10.1371/journal.pone.0114627
[88]  Holmgren, L., Szeles, A., Rajnavolgyi, E., et al. (1999) Horizontal Transfer of DNA by the Uptake of Apoptotic Bodies. Blood, 93, 3956-3963. https://doi.org/10.1182/blood.V93.11.3956.411k05_3956_3963
[89]  Lee, T.H., Chennakrishnaiah, S., Audemard, E., et al. (2014) Oncogenic Ras-Driven Cancer Cell Vesiculation Leads to Emission of Double-Stranded DNA Capable of Interacting with Target Cells. Biochemistry and Biophysics Research Communications, 451, 295-301. https://doi.org/10.1016/j.bbrc.2014.07.109
[90]  Waldenstrom, A., Genneback, N., Hellman, U., et al. (2012) Cardiomyocyte Microvesicles Contain DNA/RNA and Convey Biological Messages to Target Cells. PLoS ONE, 7, e34653. https://doi.org/10.1371/journal.pone.0034653
[91]  Lazaro-Ibanez, E., Sanz-Garcia, A., Visakorpi, T., et al. (2014) Different gDNA Content in the Subpopulations of Prostate Cancer Extracellular Vesicles: Apoptotic bodies, Microvesicles, and Exosomes. Prostate, 74, 1379-1390. https://doi.org/10.1002/pros.22853
[92]  Kilpinen, L., Impola, U., Sankkila, L., et al. (2013) Extracellular Membrane Vesicles from Umbilical Cord Blood-Derived MSC Protect against Ischemic Acute Kidney Injury, a Feature that Is Lost after Inflammatory Conditioning. Journal Extracellular Vesicles, 2, Article No. 21927. https://doi.org/10.3402/jev.v2i0.21927
[93]  Salomon, C., Ryan, J., Sobrevia, L., et al. (2013) Exosomal Signaling during Hypoxia mediates Microvascular Endothelial Cell Migration and Vasculogenesis. PLoS ONE, 8, e68451. https://doi.org/10.1371/journal.pone.0068451
[94]  Rani, S., Ryan, A.E., Griffen, D., et al. (2015) Mesenchymal Stem Cell-Derived Extracellular Vesicles: Toward Cell-Free Therapeutic Applications. Molecular Therapy, 23, 812-823. https://doi.org/10.1038/mt.2015.44
[95]  Batista, B.S., Eng, W.S., Pilobello, K.T., et al. (2011) Identification of a Conserved glycan Signature for Microvesicles. Journal of Proteome Research, 10, 4624-4633. https://doi.org/10.1021/pr200434y
[96]  Hagerstrand, H., Mrowczynska, L., Salzer, U., et al. (2006) Curvature-Dependent lateral Distribution of Raft Markers in the Human Erythrocyte Membrane. Molecular Membrane Biology, 23, 277-288. https://doi.org/10.1080/09687860600682536
[97]  Kralj-Iglic, V. and Veranic, P. (2006) Curvature-Induced Sorting of Bilayer Membrane Constituents and Formation of Membrane Rafts. Advances in Planar Lipid Bilayers and Liposomes, 5, 129-149. https://doi.org/10.1016/S1554-4516(06)05005-8
[98]  Perez-Hernandez, D., Gutierrez-Vazquez, C., Jorge, I., et al. (2013) The Intracellular Interactome of Tetraspanin-Enriched Microdomains Reveals Their Function as Sorting Machineries toward Exosomes. Journal of Biological Chemistry, 288, 11649-11661. https://doi.org/10.1074/jbc.M112.445304
[99]  Bari, R., Guo, Q., Xia, B., et al. (2011) Tetraspanins Regulate the Protrusive Activities of Cell Membrane. Biochemical and Biophysical Research Communications, 415, 619-626. https://doi.org/10.1016/j.bbrc.2011.10.121
[100]  Andreu, Z. and Yáñez-Mó, M. (2014) Tetraspanins in Extracellular Vesicle Formation and Function. Frontiers in Immunology, 5, 442. https://doi.org/10.3389/fimmu.2014.00442
[101]  Trajkovic, K., Hsu, C., Chiantia, S., et al. (2008) Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. Science, 319, 1244-1247. https://doi.org/10.1126/science.1153124
[102]  Van Niel, G., Charrin, S., Simoes, S., et al. (2011) The Tetraspanin CD63 Regulates ESCRT-Independent and Dependent Endosomal Sorting during Melanogenesis. Developmental Cell, 21, 708-721. https://doi.org/10.1016/j.devcel.2011.08.019
[103]  Metcalf, D. and Isaacs, A.M. (2010) The Role of ESCRT Proteins in Fusion Events Involving Lysosomes, Endosomes, and Autophagosomes. Biochemical Society Translations, 38, 1469-1473. https://doi.org/10.1042/BST0381469
[104]  Wollert, T., Wunder, C., Lippincotte-Schwartz, J., et al. (2009) Membrane Scission by the ESCRT-III Complex. Nature, 458, 172-177. https://doi.org/10.1038/nature07836
[105]  Hanson, P.I. and Cashikar, A. (2012) Multivesicular Body Morphogenesis. Annual Review of Cellular Developmental Biology, 28, 337-362. https://doi.org/10.1146/annurev-cellbio-092910-154152
[106]  Baietti, M.F., Zhang, Z., Mortier, E., et al. (2012) Syndecan-Syntenin-ALIX Regulates the Biogenesis of Exosomes. Nature Cell Biology, 14, 677-685. https://doi.org/10.1038/ncb2502
[107]  Ghossoub, R., Lembo, F., Rubio, A., et al. (2014) Syntenin-ALIX Exosome Biogenesis and Budding into Multivesicular Bodies Are Controlled by ARF6 and PLD2. Nature Communications, 5, Article No. 3477. https://doi.org/10.1038/ncomms4477
[108]  Sala-Valdes, M., Ursa, A., Charrin, S., et al. (2006) EWI2 and EWI-F Link the Transpanin Web to the Actin Cytoskeleton through Their Direct Association with Ezrin-Radixin-Moesin Proteins. Journal of Biological Chemistry, 281, 19665-19675. https://doi.org/10.1074/jbc.M602116200
[109]  Huber, L.A. and Teis, D. (2016) Lysosomal Signaling in Control Degradation Pathways. Current Opinion in Cell Biology, 39, 8-14. https://doi.org/10.1016/j.ceb.2016.01.006
[110]  Desdín-Micó, G. and Mittelbrunn, M. (2017) Role of Exosomes in the Protection of Cellular Homeostasis. Cell Adhesion and Migration, 11, 127-134. https://doi.org/10.1080/19336918.2016.1251000
[111]  Ratajck, J., Wysoczynski, M., Hayek, F., et al. (2006) Membrane-Derived Microvesicles: Important and Underappreciated Mediators of Cell-to-Cell Communication. Leukemia, 20, 1487-1495. https://doi.org/10.1038/sj.leu.2404296
[112]  Bilyy, R.O., Shkanndina, T., Tomin, A., et al. (2012) Macrophages Discriminate Glycosylation Patterns of Apoptotic Cell-Derived Microparticles. Journal of Biological Chemistry, 287, 494-503. https://doi.org/10.1074/jbc.M111.273144
[113]  Cai, H., Reinisch, K. and Ferro-Novick, S. (2007) Coats, Tethers, Rabs, and SNAREs Work Together to Mediate the Intracellular Destinations of a Transport Vesicle. Developmental Cell, 12, 671-682. https://doi.org/10.1016/j.devcel.2007.04.005
[114]  Savina, A., Vidal, M. and Colombo, M.I. (2002) The Exosome Pathway in K562 Cells Is Regulated by Rab11. Journal of Cell Science, 115, 2505-2515. https://doi.org/10.1242/jcs.115.12.2505
[115]  Stenmark, H. (2009) Rab GTPases as Coordinators of Vesicle Traffic. National Reviews Molecular Cell Biology, 10, 513-525. https://doi.org/10.1038/nrm2728
[116]  Rana, S., Yue, S., Stadel, D., et al. (2012) Toward Tailored Exosomes: The Exosomal Tetraspanin Web Contributes to Target Cell Selection. International Journal of Biochemistry and Cell Biology, 44, 1574-1584. https://doi.org/10.1016/j.biocel.2012.06.018
[117]  Segura, E., Guerin, C., Hoff, N., et al. (2007) CD8 Dendritic Cells Use LFA-1 to Capture MHC-Peptide Complexes from Exosomes in Vivo. Journal of Immunology, 179, 1489-1496. https://doi.org/10.4049/jimmunol.179.3.1489
[118]  Mulcahy, L.A., Pink, R.C. and Carter, D.R.F. (2014) Routes and Mechanisms of Extracellular Vesicle Uptake. Journal of Extracellular Vesicles, 3, Article No. 24641. https://doi.org/10.3402/jev.v3.24641
[119]  Abrami, L., Brandi, L., Moayeri, et al. (2013) Hijacking Multivesicular Bodies Enables Long-Term and Exosome-Mediated Long-Distance Action of Anthrax Toxin. Cell Reports, 5, 986-996. https://doi.org/10.1016/j.celrep.2013.10.019
[120]  Owen, M. (1988) Marrow Stromal Stem Cells. Journal of Cell Science, 10, 63-76. https://doi.org/10.1242/jcs.1988.Supplement_10.5
[121]  Caplan, A.I. (1991) Mesenchymal Stem Cells. Journal of Orthopaedic Research, 9, 641-650. https://doi.org/10.1002/jor.1100090504
[122]  Horwitz, E.M., Le Blanc, K., Dominici, M., et al. (2005) Clarification of the Nomenclature for MSC: The International Society for Cellular Therapy Position Statement. Cytotherapy, 7, 393-395. https://doi.org/10.1080/14653240500319234
[123]  Dominici, M., Le Blanc, K., Mueller, I., et al. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cryotherapy, 8, 315-317. https://doi.org/10.1080/14653240600855905
[124]  Bernardo, M.E., Locatelli, F. and Fibbe, W.E. (2009) Mesenchymal Stromal Cells. Annals of the New York Academy of Sciences, 1176, 101-117. https://doi.org/10.1111/j.1749-6632.2009.04607.x
[125]  Prockop, D.J., Brenner, M., Fibbe, W.E., et al. (2010) Defining the Risks of Mesenchymal Stromal Cell Therapy. Cytotherapy, 12, 576-578. https://doi.org/10.3109/14653249.2010.507330
[126]  Kasper, B., Dankert, N., Tuischer, J., et al. (2007) Mesenchymal Stem Cells Regulate Angiogenesis According Their Mechanical Environment. Stem Cells, 25, 903-910. https://doi.org/10.1634/stemcells.2006-0432
[127]  Horwitz, E.M. and Dominici, M. (2008) How Do Mesenchymalstromal Cells Exert Their Therapeutic Benefit? Cytotherapy, 10, 771-774. https://doi.org/10.1080/14653240802618085
[128]  Rasmusson, I., Ringden, O., Sundberg, B., et al. (2005) Mesenchymal Stem Cells Inhibit Lymphocyte Proliferation by Mitogens and Alloantigens by Different Mechanisms. Experimental Cell Research, 305, 33-41. https://doi.org/10.1016/j.yexcr.2004.12.013
[129]  da Silva Meirelles, L., Fontes, A.M., Covas, D.T., et al. (2009) Mechanisms Involved in the Therapeutic Properties of Mesenchymal Stem Cells. Cytokine & Growth Factor Reviews, 20, 419-427. https://doi.org/10.1016/j.cytogfr.2009.10.002
[130]  Le Blanc, K., Frassoni, F., Ball, L., et al. (2008) Mesenchymal Stem Cells for Treatment of Steroid-Resistant, Severe, Acute Graft-versus-Host Disease: A Phase II Study. The Lancet, 371, 1578-1586. https://doi.org/10.1016/S0140-6736(08)60690-X
[131]  Mallam, E., Kemp, K., Wilkins, A., et al. (2010) Characterization of in Vitro Expanded Bone Marrow-Derived Mesenchymal Stem Cells from Patients with Multiple Sclerosis. Multiple Sclerosis Journal, 62, 909-918. https://doi.org/10.1177/1352458510371959
[132]  Kuroda, R., Ishida, K., Matsumoto, T., et al. (2007) Treatment of a Full0thickness Articular Cartilage Defect in the Femoral Condyle of an Athlete with Autologous Bone-Marrow Stromal Cells. Osteoarthritis and Cartilage, 15, 226-231. https://doi.org/10.1016/j.joca.2006.08.008
[133]  Hare, J.M., Traverse, J.H., Henry, T.D., et al. (2009) A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Study of Intravenous Adult Human Mesenchymal Stem Cells (Prochymal) after Acute Myocardial Infarction. Journal of the American College of Cardiology, 54, 2277-2288. https://doi.org/10.1016/j.jacc.2009.06.055
[134]  Anna, G., John, D., Jean, F., et al. (2008) Initial Report on a Phase I Clinical Trial: Prevention and Treatment of Post-Operative Acute Kidney Injury with Allogeneic Mesenchymal Stem Cells in Patients Who Require on-Pump Cardiac Surgery. Cellular Therapy and Transplantation, 1, 31-35.
[135]  Gir, P., Brown, S.A., Oni, G., et al. (2012) Fat Grafting: Evidence-Based Review on Autologous Fat Harvesting, Processing, Reinjection, and Storage. Plastic and Reconstructive Surgery, 130, 249-258. https://doi.org/10.1097/PRS.0b013e318254b4d3
[136]  Sasaki, G.H. (2015) Plastic Surgery Update on the Biology of Fat Cells and Adipose-Derived Stem Cells for Fat Grafting. Open Access Library Journal, 2, e1505.
[137]  Halme, D.G. and Kessler, D.A. (2006) FDA Regulation of Stem Cell-Based Therapies. New England Journal of Medicine, 355, 1730-1735. https://doi.org/10.1056/NEJMhpr063086
[138]  Daher, S.R., Johnstone, B.H., Phinney, D.G., et al. (2008) Adipose Stromal/Stem Cells: Basic and Translational Advances: The IFATS Collection. Stem Cells, 26, 2664-2665. https://doi.org/10.1634/stemcells.2008-0927
[139]  Chang, Q., Li, J., Dong, Z., et al. (2013) Quantitative Volumetric Analysis of Progressive Hemifacial Atrophy Corrected Using Stromal Vascular Fraction-Supplemented Autologous Fat Grafts. Dermatological Surgery, 39, 1465-1473.
[140]  Yoshimura, K., Sato, K., Aoi, N., et al. (2008) Cell-Assisted Lipotransfer for Cosmetic Breast Augmentation: Supportive Use of Adipose-Derived Stem/Stromal Cells. Aesthetic Plastic Surgery, 32, 48-55. https://doi.org/10.1007/s00266-007-9019-4
[141]  Tiryaki, T. and Findikli, D. (2008) Staged Stem Cell-Enriched Tissue (SET) Injections for Sort Tissue Augmentation in Hostile Recipient Areas: A Preliminary Report. Aesthetic Plastic Surgery, 35, 965-971. https://doi.org/10.1007/s00266-011-9716-x
[142]  Sasaki, G.H. (2015) The Safety and Efficacy of Cell-Assisted Fat Grafting to Traditional Fat Grafting in the Anterior Mid-Face: An Indirect Assessment by 3D Imaging. Aesthetic Plastic Surgery, 39, 833-846. https://doi.org/10.1007/s00266-015-0533-5
[143]  Peltoniemi, H.H., Salmi, A., Miettinen, S., et al. (2013) Stem Cell Enrichment Does Not Warrant a Higher Graft Survival in Lipofilling of the Breast: A Prospective Comparative Study. Journal of Plastic Reconstructive Aesthetic Surgery, 66, 1494-1503. https://doi.org/10.1016/j.bjps.2013.06.002
[144]  Sterodemas, A., de Faria, J., Nicaretta, B., et al. (2011) Autologous Fat Transplantation Versus Adipose-Derived Stem Cell-Enriched Lipografts: A Study. Aesthetic Surgical Journal, 31, 682-693. https://doi.org/10.1177/1090820X11415976
[145]  Alexander, R.W. (2016) Understanding Mechanical Emulsification (Nanofat) versus Enzymatic Isolation of Tissue Stromal Vascular Fraction (tSVF) Cells from Adipose Tissue: Potential Uses in Biocellular Regenerative Medicine. Journal of Prolotherapy, 8, e947-e960.
[146]  Tonnard, P., Verpaele, A., Peeters, G., et al. (2013) Nanofat Grafting: Basic Research and Clinical Applications. Plastic and Reconstructive Surgery, 132, 1017-1026. https://doi.org/10.1097/PRS.0b013e31829fe1b0
[147]  Conde-Green, A., Rodriguez, R.L., Slezak, S., et al. (2014) Comparison between Stromal Vascular Cells’ Isolation with Enzymatic Digestion and Mechanical Processing of Aspirated Adipose Tissue. Plastic and Reconstructive Surgery, 134, 54. https://doi.org/10.1097/01.prs.0000455394.06800.62
[148]  Oberbauer, E., Steffenhagen, C., Wurzer, C., et al. (2015) Enzymatic and Non-Enzymatic Isolation Systems for Adipose Tissue-Derived Cells: Current State of the Art. Cell Regeneration, 4, 7. https://doi.org/10.1186/s13619-015-0020-0
[149]  Conde-Green, A., Kotamarti, V.S., Sherman, L.S., et al. (2016) Shift toward Mechanical Isolation of Adipose-Derived Stromal Vascular Fraction: Review of Upcoming Techniques. Plastic and Reconstructive Surgery, 4, e1017. https://doi.org/10.1097/GOX.0000000000001017
[150]  Cohen, S.R., Tiryaki, T., Womack, H., et al. (2019) Cellular Optimization of Nanofat: Comparison of Two Nanofat Processing Devices in Terms of Cell Count and Viability. Aesthetic Surgery Journal Open Forum, 1, Article ID: ojz028. https://doi.org/10.1093/asjof/ojz028
[151]  Marx, R.E. (2004) Platelet-Rich Plasma: Evidence to Support Its Use. Journal of Oral and Maxillofacial Surgery, 62, 489-496. https://doi.org/10.1016/j.joms.2003.12.003
[152]  Sadati, K.S., Corrado, A.C. and Alexander, R.W. (2006) Platelet-Rich Plasma (PRP) Utilized to Promote Greater Graft Retention in Autologous Fat Grafting. American Journal of Cosmetic Surgery, 23, 203-211. https://doi.org/10.1177/074880680602300407
[153]  Cervilli, V., Gentile, P., Scioli, M.G., et al. (2009) Application of Platelet-Rich Plasma in Plastic Surgery: Clinical and in Vitro Evaluation. Tissue Engineering Part C: Methods, 15, 625-634. https://doi.org/10.1089/ten.tec.2008.0518
[154]  Sasaki, G.H. (2019) A Preliminary Clinical Trial Comparing Split Treatments to the Face and Hand with Autologous Fat Grafting and Platelet-Rich Plasma (PRP): A 3D, IRB Approved Study. Aesthetic Surgery Journal, 39, 675-686. https://doi.org/10.1093/asj/sjy254
[155]  Centeno, C.J., Fuerst, N., Faulkner, S.J., et al. (2011) Is Cosmetic Platelet-Rich Plasm a Drug to Be Regulated by the Food and Drug Administration? Journal of Cosmetic Dermatology, 10, 171-173. https://doi.org/10.1111/j.1473-2165.2011.00575.x
[156]  Hessvik, N.P. and Llorent, A. (2018) Current Knowledge on Exosome Biogenesis and Release. Cellular and Molecular Life Sciences, 75, 193-208. https://doi.org/10.1007/s00018-017-2595-9
[157]  De Jong, O.G., Van Valkom, B.M., Schiffelers, R.M., et al. (2014) Extracellular Vesicles: Potential Roles in Regenerative Medicine. Frontiers in Immunology, 5, Article No. 608. https://doi.org/10.3389/fimmu.2014.00608
[158]  Whitford, W. and Guterstam, P. (2019) Exosome Manufacturing Status. Future Medical Chemistry, 11, 1225-1236. https://doi.org/10.4155/fmc-2018-0417
[159]  Bersenev, A. (2016) Considerations for Clinical Translation of Extracellular Vesicles as New Class of Therapeutics. In: William, G. and Alexey, B., Eds., Stem Cell Assays, Department of Hematology Children’s Hospital of Philadelphia, Philadelphia, USA.
[160]  Owens, A.P. and Mackman, N. (2011) Microparticles in Hemostasis and Thrombosis. Circulation Research, 108, 1284-1297. https://doi.org/10.1161/CIRCRESAHA.110.233056
[161]  Rhee, H.S., Black, M. and Schubert, U. (2004) The Functional Role of Blood Platelet Components in Angiogenesis. Thrombosis and Haemostasis, 92, 394-402. https://doi.org/10.1160/TH03-04-0213
[162]  Zhu, W., Huang, L., Li, Y., et al. (2010) Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth in Vivo. Cancer Letters, 315, 28-37. https://doi.org/10.1016/j.canlet.2011.10.002
[163]  van Balkom, B.W., de Jong, O.G., Smits ,M., et al. (2013) Endothelial Cells Require mR-214 to Secrete Exosomes that Suppress Senescence and Induce Angiogenesis in Human and Mouse Endothelial Cells. Blood, 121, 3997-4006. https://doi.org/10.1182/blood-2013-02-478925
[164]  Cloutier, N., Tan, S., Boudreau, L.H., et al. (2013) The Exposure of Autoantigens by Microparticles Underlies the Formation of Potent Inflammatory Components: The Microparticle-Associated Immune Complexes. EMBO Molecular Medicine, 5, 235-249. https://doi.org/10.1002/emmm.201201846
[165]  Ankrum, J.A., Ong, J.F. and Karp, J.M. (2014) Mesenchymal Stem Cells: Immune Evasive, Not Immune Privileged. Nature Biotechnology, 32, 1-9. https://doi.org/10.1038/nbt.2816
[166]  Sengupta, V., Sengupta, S., Lazo, A., et al. (2020) Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells and Development, 29, 747-754. https://doi.org/10.1089/scd.2020.0080
[167]  Maxson, S., Lopex, E.A., Yoo, D., et al. (2010) Concise Review: Role of Mesenchymal Stem Cell in Wound Repair. Stem Cells Translational Medicine, 1, 142-149. https://doi.org/10.5966/sctm.2011-0018
[168]  Hocking, A.M. and Gibran, N.S. (2010) Mesenchymal Stem Cells: Paracrine Signaling and Differentiation during Cutaneous Wound Repair. Experimental Cell Research, 316, 2213-2219. https://doi.org/10.1016/j.yexcr.2010.05.009
[169]  Huang, S., Wu, Y., Gao, D., et al. (2015) Paracrine Action of Mesenchymal Stromal Cells Delivered by Microspheres Contributes to Cutaneous Wound Healing and Prevents Scar Formation in Mice. Cytotherapy, 17, 922-931. https://doi.org/10.1016/j.jcyt.2015.03.690
[170]  Hu, L., Wang, J., Zhou, X., et al. (2016) Exosomes Derived from Human Adipose Mesenchymal Stem Cells Accelerates Cutaneous Wound Healing via Optimizing the Characteristics of Fibroblasts. Scientific Reports, 6, Article No. 32933. https://doi.org/10.1038/srep32993
[171]  Zhang, B., Wand, M., Gong, A., et al. (2015) HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells, 33, 2158-2168. https://doi.org/10.1002/stem.1771
[172]  Sasaki, G.H. (2017) Micro-Needling Depth Penetration, Presence of Pigment Particles, and Fluorescein-Stained Platelets: Clinical Usage for Aesthetic Concerns. Aesthetic Surgery Journal, 37, 71-83. https://doi.org/10.1093/asj/sjw120
[173]  Schooling, S.R. and Beveridge, T.J. (2006) Membrane Vesicles: An Over-Looked Component of the Matrices of Biofilms. Journal of Bacteriology, 188, 5945-5957. https://doi.org/10.1128/JB.00257-06
[174]  Yonezawa, H., Osaki, T., Kurata, S., et al. (2009) Outer Membrane Vesicles of Helicobacter Pylori TK1402 Are in Involved in Biofilm Formation. BMC Microbiology, 9, Article No. 197. https://doi.org/10.1186/1471-2180-9-197
[175]  Garcia-Contreras, M., Messaggio, F., Jimenez, O., et al. (2014) Differences in Exosome Content of Human Adipose Tissue Processed by Non-Enzymatic and Enzymatic Methods. CellR4, 3, e1423.
[176]  Chen, B., Cai, J., Wei, Y., et al. (2019) Exosomes Are Comparable to Source Adipose Stem Cells in Fat Graft Retention with Up-Regulating Early Inflammation and Angiogenesis. Plastic and Reconstructive Surgery, 144, 816e-827e. https://doi.org/10.1097/PRS.0000000000006175
[177]  Zhu, Y., Zhang, J., Hu, X., et al. (2020) Supplementation with Extracellular Vesicles Derived from Adipose-Derived Stem Cells Increases Fat Graft Survival and Browning in Mice: A Cell-Free Approach to Construct Beige Fat from White Fat Grafting. Plastic and Reconstructive Surgery, 145, 1183-1195. https://doi.org/10.1097/PRS.0000000000006740
[178]  Lu, K., Li, H., Yang, I., et al. (2017) Exosomes as Potential Alternatives to Stem Cell Therapy for Intervertebral Disc Degeneration: In Vitro Study on Exosomes Interaction of Nucleus Pulposus Cells and Bone Marrow Mesenchymal Stem Cells. Stem Cell Research & Therapy, 8, Article No. 108. https://doi.org/10.1186/s13287-017-0563-9
[179]  Lin, Z., Rodriguez, N.E., Zhao, J., et al. (2016) Selective Enrichment of microRNAs in Extracellular Matrix Vesicles Produced by Growth Plate Chondrocytes. Bone, 88, 47-55. https://doi.org/10.1016/j.bone.2016.03.018
[180]  Liu, X., Yang, Y., Li, Y., et al. (2017) Integration of Stem Cell-Derived Exosomes with in Situ Hydrogen Glue as a Promising Tissue Patch for Articular Cartilage Regeneration. Nanoscale, 9, 4430-4438. https://doi.org/10.1039/C7NR00352H
[181]  Cosenza, S., Ruiz, M., Toupet, K., et al. (2017) Mesenchymal Stem Cells Derived Exosomes and Microparticles Protect Cartilage and Bone from Degradation in Osteoarthritis. Nature Scientific Reports, 7, Article No. 16214. https://doi.org/10.1038/s41598-017-15376-8
[182]  East, J. and Alexander, T. (2020) IRB Approved Pilot Study of an Extracellular Vesicle Isolate Product Evaluating the Treatment of Osteoarthritis in Combat-Related Injuries. Stem Cell Research, 1, 1-10. https://doi.org/10.52793/JSCR.2020.1(2)-09
[183]  Rajendran, R.L., Gangadaran, P., Bak, S.S., et al. (2017) Extracellular Vesicles Derived from MSCs Activates Dermal Papilla Cell in Vitro and Promotes Hair Follicle Conversion from Telogen to Anagen in Mice. Nature Scientific Report, 7, Article No. 15560. https://doi.org/10.1038/s41598-017-15505-3
[184]  Sasaki, G.H. (2018) Hair Biology and Androgenetic Alopecia: Diagnosis, Neogenesis, and Management. Advances in Cosmetic Surgery, 1, 185-192. https://doi.org/10.1016/j.yacs.2018.02.014
[185]  Sasaki, G.H. (2019) Review of Human Hair Follicle Biology: Dynamics of Niches and Stem Cell Regulation for Possible Therapeutic Hair Stimulation for Plastic Surgeons. Aesthetic Plastic Surgery, 43, 253-266. https://doi.org/10.1007/s00266-018-1248-1
[186]  Sasaki, G.H. (2021) The Effects of Lower versus Higher Cell Number of Platelet-Rich Plasma (PRP) in Hair Density and Diameter in Androgenetic Alopecia (AGA): A Randomized, Double-Blinded, Placebo, Parallel-Group Half-Scalp IRB-Approved Study. Aesthetic Surgery Journal, sjab23. https://doi.org/10.1093/asj/sjab236
[187]  Liao, C., Booker, R.C., Morrison, S.J., et al. (2017) Identification of Hair Shaft Progenitors That Create a Niche for Hair Pigmentation. Genes & Development, 31, 744-756. https://doi.org/10.1101/gad.298703.117

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413