全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Evaluation of the Association and Rotation of Maize with Legumes, in Direct Sowing in the Democratic Republic of Congo

DOI: 10.4236/oalib.1106522, PP. 1-18

Subject Areas: Agricultural Science

Keywords: Maize, Soybean, Cowpea, Intercropping, Mulch, INERA, DR Congo

Full-Text   Cite this paper   Add to My Lib

Abstract

A study was carried out to find, in the intercropping system, the combination for optimizing maize production put into the direct seeding mulch-based cropping systems (DMC). Eight varieties of maize and two legumes were put into intercropping and rotated systems respectively in first and second season, following a factorial system with four replicates. In the second season, maize was sowed on mulch from sole crops and intercrops of first season. The results showed that in the first and second seasons, maize sole crop and maize on maize cowpea mulch were more productive (2350.19 kg·ha-1 and 2974.82 kg·ha-1 respectively) than maize on maize soybean mulch. But, Mudishi 3-soya and 07SADVE variety on maize cowpea mulch obtained the greatest benefit for the various association systems (cost/benefit ratio = 4.04 and 2.01 respectively). Maize varieties have doubled, tripled or quadrupled their yields when rotated with cowpea and soybean, and the high yields observed in this study resulted in significant benefits in increasing their ratios whether in combination or in rotation. These new agricultural production techniques could free the farmer from tillage by leaving the cover plants to ensure equivalent work (DMC).

Cite this paper

Pongi, G. K. , Kabongo, J. P. T. , Mbuya, A. K. , Hauser, S. , Mumba, A. D. , Kizungu, R. V. and Kabwe, C. N. (2020). Evaluation of the Association and Rotation of Maize with Legumes, in Direct Sowing in the Democratic Republic of Congo. Open Access Library Journal, 7, e6522. doi: http://dx.doi.org/10.4236/oalib.1106522.

References

[1]  Hamd Alla, W.A., Shalaby, E.M., Dawood, R.A. and Zohry, A.A. (2014) Effect of Cowpea (Vigna sinensis L.) with Maize (Zea mays L.) Intercropping on Yield and Its Components. International Journal of Biological, Veterinary, Agricultural and Food Engineering, 8, 1170-1176.
[2]  Hauggaard-Nielsen, H., Andersen, M.K., Jørnsgaard, B. and Jensen, E.S. (2006) Density and Relative Frequency Effects on Competitive Interactions and Resource Use in Pea-Barley Intercrops. Field Crops Research, 95, 256-267. https://doi.org/10.1016/j.fcr.2005.03.003
[3]  Ofori, F. and Stern, W.R. (1987) Cereal-Legume Intercropping Systems. Advances in Agronomy, 41, 41-90. https://doi.org/10.1016/S0065-2113(08)60802-0
[4]  Mandal, M.K., Banerjee, M., Banerjee, H., Pathak, A. and Das, R. (2014) Evaluation of Cereal-Legumes Intercropping Systems through Productivity and Competition Ability. Asian Journal of Science and Technology, 5, 233-237.
[5]  Steiner, K.G. (1982) Intercropping in Tropical Smallholder Agriculture with Special Reference to West Africa. Schriftenreihe der GT2, N. 137, Eischbon, 303 p.
[6]  Hauggaard-Nielsen, H., Ambus, P. and Jensen, E.S. (2001) Evaluating Pea and Barley Cultivars for Complementary in Intercropping at Different Levels of Soil N Availability. Field Crops Research, 72, 185-196. https://doi.org/10.1016/S0378-4290(01)00176-9
[7]  Sanginga, N. and Woomer, P.I. (2009) Integrated Soil Fertility Management in Africa: Principles, Practices, and Developmental Processes. TSBF-CIAT, Nairobi, 263 p.
[8]  Trenbath, B.R. (1976) Plant Interactions in Mixed Crop Communities. In: Papendick, R.I., Sanchez, P.A. and Triplett, G.B., Eds., Multiple Cropping, American Society of Agronomy Special Publication, 129-170. https://doi.org/10.2134/asaspecpub27.c8
[9]  Willey, R.W., Natarajan, M., Reddy, M.S., Rao, M.R., Nambiar, P.T.C.M., Kannaiyan, J. and Bhatnagar, V.S. (1983) Intercropping Studies with Annual Crops. In: Nugent, J. and O’Connor, M., Eds., Better Crop for Food, Pitman Co., London, 83-100.
[10]  Roose, E. (1984) Impact du défrichement sur la dégradation des sols tropicaux. Machine Agricole Tropicale, 87, 24-36.
[11]  Beirnaert, G. (1941) La technique culturale sous 1’Equateur. Publ. INEAC Ser. Techn., 86 p.
[12]  Jurion, F. and Henry, J. (1967) De l’agriculture itinérante l’agriculture intensifiée. INEAC, Bruxelles, 498 p.
[13]  Ilnicki, R.D. and Enache, A.J. (1992) Subterranean Clover Living Mulch: An Alternative Method of Weed Control. Agriculture, Ecosystems & Environment, 40, 249-264. https://doi.org/10.1016/0167-8809(92)90096-T
[14]  Machet, J.M., Laurent, F., Chapot, J.Y., Dore, T. and Dutrout, A. (1997) Maîtrise de l’azote dans les intercultures et les jachères. In INRA Ed., Maîtrise de l’azote dans les agrosystèrnes, Les Colloques No. 83, 271-288.
[15]  Capillon, A. and Seguy, L. (2002) Ecosystèmes cultivés et stockage du carbone. Cas des systèmes de culture en semis direct avec couverture végétale. Comptes Rendus de l’Académie d’Agriculture de France, 88, 63-70.
[16]  CIALCA (2008) Rapport d’avancement 4-Bujumbura, Amélioration des moyens de vie basés sur l’agriculture en Afrique Centrale par le biais d’une productivité de systèmes durablement accrue en vue d’améliorer les revenus, la sécurité alimentaire et l’environnement. Réunion de lancement de CIALCA-II, Bujumbura, du 28 au 31 octobre 2008, 28 p.
[17]  Mucheru-Muna, M., Pypers, P., Mugendi, D., Kung’u, J., Mugwe, J., Merckx, R. and Vanlauwe, B. (2010) A Staggered Maize-Legume Intercrop Arrangement Robustly Increases Crop Yields and Economic Returns in the Highlands of Central Kenya. Field Crops Research, 115, 132-139. https://doi.org/10.1016/j.fcr.2009.10.013
[18]  Gilley, J.E., Finkuer, S.C. and Varvel, G.E. (1987) Slope Length and Surface Residue Influences on Runoff and Erosion. Transactions—American Society of Agricultural Engineers, 30, 148. https://doi.org/10.13031/2013.30417
[19]  Alberts, E. and Neibling, W.H. (1994) Influence of Crop Residues on Water Erosion. In: Unger, P.W., Ed., Managing Agricultural Residues, Lewis Pub., 20-39.
[20]  Köppen, W. (1936) Das geogrphische system der climate. In: Köppen, W. and Geiger, R., Eds., Handbuch der klimatologie, Grebrüder Borntraeger, Berlin, 1-44.
[21]  Paliwal, L.R., Granados, G., Violic, A.D., Lafitte, H.R. and Marathee, J.P. (2002) Le maïs en zones tropicales: Amélioration et production. 256 p.
[22]  Van Asten, P.J.A., Twagirayezu, P. and Gaidashova, S. (2007) Effect of Guatamala Grass (Tripsacum laxum) Mulch Applications on Soil Moisture Conservation and Soil Fertility Status. Proceedings of ISAR National Conference, Kigali, 26-27.
[23]  Kasetsart University (1989) Annual Report. Department of Agronomy and National Corn and Sorghum Research Center, Bangkok.
[24]  Jeyakumaran, J. and Seran, T.H. (2007) Studies on Intercropping Capsicum (Capsicum annum L.) with Bushitao (Vigna unguiculata L.). Proceedings of the 6th Annual Research Session, 18-19 October 2007, 431-440.
[25]  Seran, T.H. and Brintha, I. (2010) Review on Maize Based Intercropping. Journal of Agronomy, 9, 135-145. https://doi.org/10.3923/ja.2010.135.145
[26]  Adafre, A.N. (2016) Advantages of Maize-Haricot Bean Intercropping over Sole Cropping through Competition Indices at West Badewacho Woreda, Hadiya Zone, SNNPR. Academic Research Journal of Agricultural Science and Research, 4, 1-8.
[27]  Khonde, P., Tshiabukole, K., Kankolongo, M., Hauser, S., Djamba, M., Vumilia, K. and Nkongolo, K. (2018) Evaluation of Yield and Competition Indices for Intercropped Eight Maize Varieties, Soybean and Cowpea in the Zone of Savanna of South-West RD Congo. Open Access Library Journal, 5, e3746. https://doi.org/10.4236/oalib.1103746
[28]  Xiaolei, S. and Zhifeng, W. (2002) The Optimal Leaf Area Index for Cucumber Photosynthesis and Production in Plastic Green House. ISHS Acta Horticulturae, 633 (XXVI International Horticultural Congress). http://www.actahort.org/books/633/633_19.htm
[29]  Prasad, R.B. and Brooks, R.M. (2005) Effects of Varying Maize Density on Intercropped Maize and Soybeans in Nepal. Experimental Agriculture, 41, 365-382. https://doi.org/10.1017/S0014479705002693
[30]  Egbe, O.M., Alibo, S.E. and Nwueze, I. (2010) Evaluation of Some Extra-Early- and Early-Maturing Cowpea Varieties for Intercropping with Maize in Southern Guinea Savanna of Nigeria. Agriculture and Biology Journal of North America, 1, 845-858. https://doi.org/10.5251/abjna.2010.1.5.845.858
[31]  Muoneke, C.O., Ogwuche, M.A.O. and Kalu, B.A. (2007) Effect of Maize Planting Density on the Performance of Maize/Soybean Intercropping System in a Guinea Savannah Agro-Ecosystem. African Journal of Agricultural Research, 2, 667-677.
[32]  Hiebsch, C., Tetio-Kegho, F. and Chirembo, F.P. (1995) Plant Density and Soybean Maturity in a Soybean-Maize Intercrop. Agronomy Journal, 87, 965-970. https://doi.org/10.2134/agronj1995.00021962008700050032x
[33]  Olufajo, O.O., Ogungbile, A.O. and Ahmed, B. (1997) On-Farm Testing of Variety and NPK Fertilization for Maize-Cowpea Mixture in the Nigeria Savanna. In: Sedgo, T. and Oueuedraogo, M., Eds., Technology Options for Sustainable Agriculture in Sub-Saharan Africa, Publication of the Semi-Arid Food Grain Research and Development Agency (SAFGRAD) of the Scientific, Technical and Research Commission of OAU, Oueuedraogo, 235-246.
[34]  Matusso, J.M.M. (2014) Effects of Maize (Zea mays L.)-Soybean (Glycine max (L.) Merrill) Intercropping Patterns on Yields and Soil Properties in Two Contrasting Sites of Embu and Meru Counties, Kenya. Thesis, School of Agriculture and Enterprise Development, Kenyatta University, Nairobi. https://doi.org/10.5897/AJAR2013.7178
[35]  Alhassan, G.A., Kalu, B.A. and Egbe, O.M. (2012) Influence of Planting Densities on the Performance of Intercropped Bamabra Groundnut with Cowpea in Makurdi, Benue State, Nigeria. International Journal of Development and Sustainability, 1, 1-20.
[36]  Edmeades, G.O. (1990) Significant Accomplishments of Ghana Grains Development Project during Phase I, 1979-1983. 10th Ann. Maize and Coxpea Workshop of the Ghana Grains Dev. Proj., Kumasi, 20-23.
[37]  Cheruiyot, E.K., Mumera, L.M., Nakhone, L.N. and Mwonga, S.M. (2003) Effect of Legume-Managed Fallow on Weeds and Soil Nitrogen in Following Maize (Zea mays L.) and Wheat (Triticum aestivum L.) Crops in the Rift Valley Highlands of Kenya. Australian Journal of Experimental Agriculture, 43, 597-604. https://doi.org/10.1071/EA02033
[38]  Adiku, S.G.K., Jones, J.W., Kumaga, F.K. and Tonyigah, A. (2009) Effects of Crop Rotation and Fallow Residue Management on Maize Growth, Yield and Soil Carbon in a Savannah-Forest Transition Zone of Ghana. Journal of Agriculture Science, 147, 313-322. https://doi.org/10.1017/S002185960900851X
[39]  De, R., Rao, Y.Y. and Ali, W. (1983) Grain and Fodder Legumes as Preceding Crops Affecting the Yield and N Economy in Rice. Journal of Agricultural Science (Cambridge), 101, 463-466. https://doi.org/10.1017/S0021859600037825
[40]  Kumar Rao, J.V.D.K., Dart, P.J. and Sastry, P.V.S.S. (1983) Residual Effect of Pigeon Pea (Cajanus cajan) on Yield and Nitrogen Response of Maize. Experimental Agriculture, 19, 137-141. https://doi.org/10.1017/S0014479700022572
[41]  CIPEA (1984) Rapport Annuel du CIPEA 1983. Addis-Abeba (Ethiopie).
[42]  Hardter, R., Horst, W.J., Schmidt, G. and Frey, E. (1991) Yields and Land Use Efficiency of Maize-Cowpea Crop Rotations in Comparison to Mixed and Monocropping on an Alfisol in Northern Ghana. Journal of Agronomy and Crop Science, 166, 326-337. https://doi.org/10.1111/j.1439-037X.1991.tb00922.x
[43]  Carsky, R.J., Abaidoo, R., Dashiell, K.E. and Sanginga, N. (1997) Effect of Soybean on Subsequent Maize Grain Yield in Guinea Savanna of West Africa. African Crop Science Journal, 5, 31-39. https://doi.org/10.4314/acsj.v5i1.27868
[44]  Giller, K.E. and Wilson, K.J. (1991) Nitrogen Fixation in Tropical Cropping Systems. CAB International, Wallingford, 167-237.
[45]  Yusuf, A.A., Iwuafor, E.N.O., Abaidoo, R.C., Olufajo, O.O. and Sanginga, N. (2009) Grain Legume Rotation Benefits to Maize in the Northern Guinea Savanna of Nigeria: Fixed-Nitrogen versus Other Rotation Effects. Nutrient Cycling in Agroecosystems, 84, 129-139. https://doi.org/10.1007/s10705-008-9232-9
[46]  Bandyopandhyay, S.K. and De, R. (1986) N Relationship in a Legume-Non Legume Association Grown in an Intercropping System. Fertilizer Research, 10, 73-82. https://doi.org/10.1007/BF01073906
[47]  Scopel, E. (1994) Le semis direct avec paillis de résidus dans la région de V. Carranza au Mexique: Intérêt de cette technique pour améliorer l’alimentation hydrique du maïs pluvial en zones à pluviométrie irrégulière. PhD, Institut National Agronomique Paris-Grignon, Paris, 334 p.
[48]  McKenney, D.J., Wang, S.W., Drury, C.F. and Findlay, W.I. (1993) Denitrification and Mineralization in Soil Amended with Legumes, Grass and Corn Residues. Soil Science Society of American Journal, 57, 1013-1020. https://doi.org/10.2136/sssaj1993.03615995005700040022x
[49]  Mary, B., Recous, S., Darwis, D. and Robin, D. (1996) Interactions between Decomposition of Plant Residues and Nitrogen Cycling in Soil. Plant and Soil, 181, 71-82. https://doi.org/10.1007/BF00011294
[50]  Abiven, S. (2001) Effet de la qualité et de la localisation initial dans le sol sur la décomposition de résidus de culture. DEA Paris, INAA P-G, Paris VI: 41 p.
[51]  Schroth, G., Salazar, E. and Da Silva, Jr. J.P. (2001) Soil Nitrogen Mineralization under Tree Crops and Legume Cover Crop in Multi-Strata Agroforestry in Central Amazonia: Spatial and Temporal Patterns. Experimental Agricultural, 37, 253-267. https://doi.org/10.1017/S0014479701002058
[52]  Owens, L.B. and Edwards, W.M. (1993) Tillage Studies with a Corn-Soybean Rotation: Surface Runoff Chemistry. Soil Science Society of American Journal, 57, 1055-1060. https://doi.org/10.2136/sssaj1993.03615995005700040029x
[53]  Uzoh, I.M., Igwe, C.A., Okebalama, C.B. and Balalola, O.O. (2019) Legume-Maize Rotation Effect on Maize Productivity and Soil Fertility Parameters under Selected Agronomic Practices in a Sandy Loam Soil. Scientific Reports, 9, Article No. 8539. https://doi.org/10.1038/s41598-019-43679-5
[54]  Egbe, O.M. (2005) Evaluation of Some Agronomic Potential of Pigeonpea Genotypes for Intercropping with Maize and Sorghum in Southern Guinea Savanna. PhD Thesis, University of Agriculture, Makurdi.
[55]  Njoroge, J.M., Waithaka, K. and Chweya, J.A. (1993) Effects of Intercropping Young Plants of the Compact Arabica Coffee Hybrid Cultivar Ruiru 11 with Potatoes, Tomatoes, Beans and Maize on Coffee Yields and Economic Returns in Kenya. Experimental Agriculture, 29, 373-377. https://doi.org/10.1017/S0014479700020937
[56]  Tungani, J.O., Mukhwana, E. and Woomer, P.L. (2002) MBILI Is Number 1: A Handbook for Innovative Maize-Legume Intercropping. SACRED Africa, Bungoma.
[57]  Woomer, P.L. (2007) Costs and Returns of Soil Fertility Management Options in Western Kenya. In: Bationo, A., Waswa, B., Kihara, J. and Kimetu, J., Eds., Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities, Springer, Berlin, 881-890. https://doi.org/10.1007/978-1-4020-5760-1_84
[58]  Seymour, M., Kirkegaard, J.A., Peoples, M.B., White, P.F. and French, R.J. (2012) Break-Crop Benefits to Wheat in Western Australia—Insights from over Three Decades of Research. Crop and Pasture Science, 63, 1-16. https://doi.org/10.1071/CP11320
[59]  Chu, G., Shen, Q. and Cao, J. (2004) Nitrogen Fixation and N Transfer from Peanut to Rice Cultivated in Aerobic Soil in an Intercropping System and Its Effect on Soil N Fertility. Plant and Soil, 263, 17-27. https://doi.org/10.1023/B:PLSO.0000047722.49160.9e

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413