全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Application of the Economization of Power Series to Solving the Schrödinger Equation for the Gaussian Potential via the Asymptotic Iteration Method

DOI: 10.4236/oalib.1106505, PP. 1-17

Subject Areas: Numerical Mathematics

Keywords: Chebyshev Polynomials, Economization, Gaussian Potential, Asymptotic Iteration Method

Full-Text   Cite this paper   Add to My Lib

Abstract

This paper presents economized power series for the Gaussian function. The economization is accomplished by utilizing the “usual” and the “shifted” Chebyshev polynomials of the first kind. The resulting economized series are applied to the solution of the radial Schrödinger equation with the attractive Gaussian potential via the asymptotic iteration method (AIM). The obtained bound state energies are compared with those given by the same method when the Taylor expansion is used to approximate the Gaussian potential. We also compare them with those obtained from the exact Hamiltonian diagonalization on a finite basis of Coulomb Sturmian functions.

Cite this paper

Nyengeri, H. , Manariyo, B. , Nizigiyimana, R. and Mugisha, S. (2020). Application of the Economization of Power Series to Solving the Schrödinger Equation for the Gaussian Potential via the Asymptotic Iteration Method. Open Access Library Journal, 7, e6505. doi: http://dx.doi.org/10.4236/oalib.1106505.

References

[1]  Bekir, E. (2019) Efficient Chebyshev Economization for Elementary Functions. Communications Faculty of Sciences University of Ankara Series A2-A3, 61, 33-56. http://communications.science.ankara.edu.tr/index.php?series=A2-A3
[2]  Lanczos, C. (1956) Applied Analysis. Prentice-Hall, Inc., Englewood Cliffs.
[3]  Conte, S. and Carl de Boor, D. (1980) Elementary Numerical Analysis: An Algorithmic Approach. Third Edition, McGraw-Hill, Inc., New York.
[4]  Kendall, A. and Weimin, H. (2004) Elementary Numerical Analysis. Third Edition, John Wiley & Sons, Inc., Iowa City.
[5]  Guilpin, Ch. (1999) Manuel de Calcul Numérique Appliqué. EDP Sciences.
[6]  Spanier, J. and Oldham, K.B. (1987) An Atlas of Functions. Hemisphere Publication Corporation/Springer-Verlag, New York.
[7]  Mason, J.C. and Handscomb, D.C. (2002) Chebyshev Polynomials. First Edition, Chapman and Hall/CRC, London. https://doi.org/10.1201/9781420036114
[8]  Horner, J.S. (1977) Chebyshev Polynomials in the Solution of Ordinary and Partial Differential Equations. Doctor of Philosophy Thesis, Department of Mathematics, University of Wollongong, Wollongong. http://ro.uow.edu.au/theses/1543
[9]  Hamming, R.W. (1973) Numerical Methods for Scientists and Engineers. Second Edition, Dover Publications, Inc., New York.
[10]  Fletcher, C.A.J. (1984) Computational Galerkin Methods. Springer-Verlag, New York. https://doi.org/10.1007/978-3-642-85949-6_2
[11]  Press, W.H., Teukolsky, S.A., Vetterling, T.T. and Flanney, B.P. (2007) Numerical Recipes. Third Edition: The Art of Scientific Computing. Cambridge University Press, New York.
[12]  Unruh, P.F. (1968) Chebyshev Aproximations. Master’s Report, Kansas State University, Manhattan. https://ia800706.us.archive.org/25/items/chebyshevapproxi00unru/chebyshevapproxi00unru.pdf
[13]  Mudde, M.H. (2017) Chebyshev Aproximation. Master Thesis, University of Groningen, Faculty of Science and Engineering, Groningen.
[14]  López-Bonilla, J., Ramírez-García, E. and Sasa-Caraveo, C. (2010) Power Expansion in Terms of Shifted Chebyshev-Lanczos Polynomials. Revista Notas de Matemática, 6, 18-22.
[15]  Mutuk, H. (2019) Asymptotic Iteration and Variational Methods for Gaussian Potential. Pramana—Journal of Physics, 92, 66. https://doi.org/10.1007/s12043-019-1729-z
[16]  Ralston, A. and Rabinowitz, P. (2001) A First Course in Numerical Analysis. Second Edition, Dover Publications, Mineola.
[17]  Ciftci, H., Hall, R.L. and Saad, N. (2003) Asymptotic Iteration Method for Eigenvalue Problems. Journal of Physics A: Mathematical and General, 36, 11807-11816. https://doi.org/10.1088/0305-4470/36/47/008
[18]  Ciftci, H., Hall, R.L. and Saad, N. (2005) Construction of Exact Solutions to Eigenvalue Problems by Asymptotic Iteration Method. Journal of Physics A: Mathematical and General, 38, 1147-1155. https://doi.org/10.1088/0305-4470/38/5/015
[19]  Ciftci, H., Hall, R.L. and Saad, N. (2005) Perturbation Theory in a Framework of Iteration Methods. Physics Letters A, 340, 388-396. https://doi.org/10.1016/j.physleta.2005.04.030
[20]  Marakoc, M. and Boztosun, I. (2006) Accurate Iteration and Perturbative Solutions of the Yukawa Potential. International Journal of Modern Physics E, 15, 1253-1262. https://doi.org/10.1142/S0218301306004806
[21]  Mortensen, M. (2017) Shenfun-Automating the Spectral Galerkin Method. In: Skallerud, B.H. and Anderson, H.I., Eds., Ninth National Conference on Computational Mechanics, International Center for Numerical Methods in Engineering (CIMNE), 273-298.
[22]  Shen, J. (1994) Efficient Spectral Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials. SIAM Journal of Scientific Computing, 15, 1489-1505. https://doi.org/10.1137/0915089
[23]  Shen, J. (1995) Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials. SIAM Journal on Scientific Computing, 16, 74-87. https://doi.org/10.1137/0916006
[24]  Pont, M., Proulx, D. and Shakeshaft, R. (1991) Numerical Integration of Time-Dependent Schrödinger Equation for an Atom in a Radiation Field. Physical Review A, 44, 4486-4492. https://doi.org/10.1103/PhysRevA.44.4486
[25]  Nyengeri, H., Nizigiyimana, R., Ndenzako, E., Bigirimana, F., Niyonkuru, D. and Girukwishaka, A. (2018) Application of the Fröbenius Method to the Schrödinger Equation for a Spherically Symmetric Hyperbolic Potential. Open Access Library Journal, 5, e4950. https://doi.org/10.4236/oalib.1104950

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413