All Title Author
Keywords Abstract

On Possible Formation of Matter-Antimatter Exotic Molecular Structures

DOI: 10.4236/oalib.1106064, PP. 1-27

Subject Areas: Classical Physics

Keywords: Big Bang Theory, Universe and Antiuniverse, Four-Body Systems, Positroniums, Protoniums, Muoniums, Pioniums

Full-Text   Cite this paper   Add to My Lib


Possible formation of exotic matter-antimatter molecular structure is considered as one of the most challenging problems at International Laboratories of Particle Physics. In the present work, elaborate computer codes built for investigating four-body systems are employed for calculating the binding energies of exotic molecules composed of electrons, protons, muons, pions and their antiparticles. The results confirm the stability of these molecules against dissociation to their lowest possible channels. Based on these results, it is argued that possible creation of two universes immediately after the Big Bang should be considered. Particularly, it is proposed that an overlapping area might exist between the universe and antiuniverse in which continuous creation and annihilation of simple and complicated particle-antiparticle structures might occur. Antiparticles escaping from this area are considered as the origin of the minimal traces of antiparticles appearing in our universe. Recent interpretations of cosmic-rays and gamma-radiations observed at the edge of our universe could be thought of as evidences for supporting this argument. Furthermore, it is argued that possible formation of matter-antimatter molecular structures could open the gate in front of a new field of chemistry to be referred to as Antimatter Chemistry.

Cite this paper

Abdel-Raouf, M. A. (2020). On Possible Formation of Matter-Antimatter Exotic Molecular Structures. Open Access Library Journal, 7, e6064. doi:


[1]  Dirac, P.A.M. (1930) A Theory of Electrons and Protons. Proceedings of the Royal Society A, 126, 360.
[2]  Dirac, P.A.M. (1931) Quantised Singularities in the Electromagnetic Field. Proceedings of the Royal Society A, 133, 60.
[3]  Anderson, C.D. (1933) The Positive Electron. Physical Review, 43, 491.
[4]  De Benedetti, S., et al. (1950) On the Angular Distribution of Two-Photon Annihilation Radiation. Physical Review, 77, 205.
[5]  Weinstein, R. (1961) Single-Quantum Annihilation of Positrons. Physical Review, 124, 1851.
[6]  Chamberlain, O., Segr?, E., Wiegand, C. and Ypsilantis, T. (1955) Observation of Antiprotons. Physical Review, 100, 947.
[7]  Chamberlain, O., et al. (1956) Antiproton Star Observed in Emulsion. Physical Review, 101, 909.
[8]  Chamberlain, O., Segrè, E., Wiegand, C. and Ypsilantis, T. (1956) Antiprotons. Nature, 177, 11-12.
[9]  Anderson, C.D. and Neddermeyer, S.H. (1936) Cloud Chamber Observations of Cosmic Rays at 4300 Meters Elevation and Near Sea-Level. Physical Review, 50, 263.
[10]  Street, J.C. and Stevenson, E.C. (1937) New Evidence for the Existence of a Particle of Mass Intermediate between the Proton and Electron. Physical Review, 52, 1003.
[11]  Hellemans, A. (1998) Putting Antimatter on the Scales. Science, 280, 1526.
[12]  Hori, M., et al. (2003) Direct Measurement of Transition Frequencies in Isolated pHe Atoms, and New CPT-Violation Limits on the Antiproton Charge and Mass. Physical Review Letters, 91, Article ID: 123401.
[13]  Hori, M., et al. (2006) Determination of the Antiproton-to-Electron Mass Ratio by Precision Laser Spectroscopy of pHe . Physical Review Letters, 96, Article ID: 243401.
[14]  Hori, M., Horváth, D. and Widmann, E. (2007) Antiprotonic Helium and CPT Invariance. Reports on Progress in Physics, 70, 1995-2065.
[15]  Hawking, S.W. and Ellis, G.F.R. (1968) The Cosmic Black-Body Radiation and the Existence of Singularities in Our Universe. Astrophysical Journal, 152, 25.
[16]  Hawking, S. and Penyose, R. (1970) The Singularities of Gravitational Collapse and Cosmology. Proceedings of the Royal Society of London, Series A, 314, 529.
[17]  Taubes, G. (1997) Theorists Nix Distant Antimatter Galaxies. Science, 278, 226.
[18]  Cohen, A.G., De Rujula, A. and Glashow, S.L. (1998) A Matter-Antimatter Universe? Astrophysical Journal, 495, 539.
[19]  Smoot, G.F. (2006) Nobel Prize Lecture.
[20]  Polchinski, J. (1998) String Theory: Vol. I & II. Cambridge University Press, Cambridge.
[21]  Green, M.B., Schwarz, J.H. and Witten, E. (2012) Superstring Theory: 25th Anniversary Edition. Cambridge Monographs on Mathematical Physics, Volume 1.
[22]  Kragh, H. (2009) Contemporary History of Cosmology and the Controversy over the Multiverse. Annals of Science, 66, 529-551.
[23]  Ellis, G. and Silk, J. (2014) Scientific Method: Defend the Integrity of Physics. Nature, 516, 321.
[24]  Steinhardt, P. (2014) Big Bang Blunder Bursts the Multiverse Bubble. Nature, 510, 9.
[25]  Tegmark, M. and Vilenkin, A. (2011) The Case for Parallel Universes. Science Daily.
[26]  Feeney, S.M., et al. (2011) First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year Results. Physical Review D, 84, Article ID: 43507.
[27]  Khoury, J., Overut, B.A., Steinhardt, P.J. and Turok, N. (2001) Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang. Physical Review D, 64, Article ID: 123522.
[28]  Khoury, J., Overut, B.A., Seiberg, N., Steinhardt, P.J. and Turok, N. (2002) From Big Crunch to Big Bang. Physical Review D, 65, Article ID: 086003.
[29]  Burgess, C.P., et al. (2001) The Inflationary Brane-Antibrane Universe. JHEP, 0107, 47.
[30]  Boyle, L., Finn, K. and Tuork, N. (2018) CPT-Symmetric Universe. Physical Review Letters, 121, Article ID: 251301.
[31]  Deutsch, M., et al. (1951) Evidence for the Formation of Positronium in Gases. Physical Review, 82, 455.
[32]  Baur, G., et al. (1996) The Inflationary Brane-Antibrane Universe. Physics Letters B, 368, 251.
[33]  Blanford, G., et al. (1998) Observation of Atomic Antihydrogen. Physical Review Letters, 80, 3037.
[34]  Amoretti, M., et al. (2002) Production and Detection of cold Antihydrogen Atoms. Nature, 419, 456.
[35]  STAR Group (CRN) (March 21) arXiv: 103.3312v2.
[36]  Madsen, N. (2018) Antiproton Physics in the ELENA Era.
[37]  Zurlo, N., et al. (2006) Evidence for the Production of Slow Antiprotonic Hydrogen in Vacuum. Physical Review Letters, 97, Article ID: 153401.
[38]  Brodsky, S.J. and Lebed, R.F. (2009) Production of the Smallest QED Atom: True Muonium (μ μ?). Physical Review Letters, 102, Article ID: 213401.
[39]  Adeva, B., et al. (2004) A Uniform Description of the States Recently Observed at B-factories. Journal of Physics G: Nuclear and Particle Physics, 30, 1929.
[40]  Abdel-Raouf, M.A. (1987) On the Existence of Arbitrary Four-Body (or Quasi- Four-Body) Molecules. Zeitschrift für Physik D, 6, 345-349.
[41]  Abdel-Raouf, M.A. (1987) Are Particles and Antiparticles Able to Form (Quasi) Molecular Structures? Proceedings of the 11th European Conference on Few-Body Physics, Vol. 2, Fontevraud, 31 August-5 September 1987, 498-503.
[42]  Abdel-Raouf, M.A. and Ladick, J. (1992) On the Existence of Antihydrogen-Deuterium and Antihydrogen-Tritium Bound-States. Journal of Physics B, 25, L199.
[43]  Abdel-Raouf, M.A. (1988) Positronium Molecules: Their Existence, Formation and Annihilation. Fortschritte der Physik, 36, 521-548.
[44]  El-Gogary, M.M.H., et al. (1995) Variational Treatment of Positronium Molecules. Journal of Physics B, 28, 4927.
[45]  Cassidy, D.B., et al. (2005) Experiments with a High-Density Positronium Gas. Physical Review Letters, 95, Article ID: 195006.
[46]  Abdel-Raouf, M.A., et al (1998) Existence of Four-Body Molecules. Journal of Physics B, 31, 1911.
[47]  Abdel Raouf, M.A. (1982) On the Variational Methods for Bound-State and Scattering Problems. Physics Reports, 84, 163-261.
[48]  Abdel-Raouf, M.A. (2020) Novel Contributions in Theoretical Physics. Lambert Academic Publisher, Mauritius.
[49]  Abdel-Raouf, M.A. (1990) Resonance in Positron Atom Scattering. Proceedings of the 3rd International Workshop on Positron and Positronium Chemistry, Milwaukee, 269-276.
[50]  Abdel-Raouf, M.A. (2008) Possible Coexistence of Antihydrogen with Hydrogen, Deuterium and Tritium Atoms. arXiv-0711-2283
[51]  Abdel-Raouf, M.A. (2019) IOP Conference Proceedings Series, Vol.1253.
[52]  Abdel-Raouf, M.A. (2020) Novel Consequences of Coexistence of Matter and Antimatter in Nature. JHEPGC, in press.
[53]  Ashby, D.E.T.F. and Whitehead, C. (1971) Is Ball Lightning Caused by Antimatter Meteorites? Nature, 230, 180-182.
[54]  Junker, B.R. and Bardsley, J.N. (1972) Hydrogen-Antihydrogen Interactions. Physical Review Letters, 28, 1227.
[55]  Morgan, D.L. and Hughes, V.W. (1973) Atom-Antiatom Interactions. Physical Review A, 7, 1811.
[56]  Koles, W., Morgan, D.L., Schrader, D.M. and Wolniewicz, L. (1975) Hydrogen-Anti- hydrogen Interactions. Physical Review A, 11, 1792.
[57]  Gridenev, D.K. and Greiner, C. (2005) Proof that the Hydrogen-Antihydrogen Molecule Is Unstable. Physical Review Letters, 94, Article ID: 223402.
[58]  Gabici, S., et al. (2019) The Origin of Galactic Cosmic Rays: Challenges to the Standard Paradigm. arXiv: 1903-11584v2
[59]  Enean, V.G. (1976) Ball Lightning as Electromagnetic Energy. Nature, 263, 753-755.
[60]  Fedosin, S.G. and Kim, A.S. (2001) Electron-Ionic Model of Ball Lightning. J. New Energy, 6, 11.
[61]  Sarkar, D., et al. (2008) Cosmic Shearfrom Scalar-Induced Gravitational Waves. Physical Review D, 77, Article ID: 103515.
[62]  Bassani, L., Landi, R.A., Malizia, M.T., Fiocchi, A., Bazzano, A.J., Bird, A.J., Dean, N., Gehrels, P., Giommi and Ubertini, P. (2007) IGR J22517 2218 = MG3 J225155 2217: A New Gamma-Ray Lighthouse in the Distant Universe. Astrophysics Journal, 669, L1-L4.
[63]  Longair, M. (2012) Cosmic Rays—Past, Present and Future. The Proceedings of the 5th International Symposium on High-Energy Gamma-Ray Astronomy, Heidelberg, 9-13 July 2012, 113.
[64]  Fleischmann, M. and Pons, S.J. (1989) Electrochemically Induced Nuclear Fusion of Deuterium. Journal of Electroanalytical Chemistry, 216, 301.
[65]  Fleischmann, M. (2003) Background of Cold Fusion: The Genesis of a Concept. World Scientific Publishing, Singapore.
[66]  Abdel-Raouf, M.A. (1989) Coexistence of Hydrogen and Antihydrogen: Possible Application to Cold Fusion. Proceedings of the 3rd International Conference on “Positron and Positronium Chemistry”, Milwaukee, 299-305.
[67]  Abdel-Raouf, M.A. (1991) Fruejahrstagung der Deutschen Physikalischen Geselschaft, Freiburg, Mo24.28.


comments powered by Disqus

Contact Us


微信:OALib Journal